DOI: https://doi.org/10.15588/1607-3274-2019-4-17

### AVALANCHE CHARACTERISTICS OF CRYPTOGRAPHIC FUNCTIONS OF TERNARY LOGIC

#### Abstract

to research their cryptographic properties and develop effective criteria for the cryptographic quality of their components. The

development of efficient methods for the synthesis of high-quality cryptographic primitives based on the functions of many-valued

logic is also an important task. The object of this research is the process of improving the efficiency of cryptographic algorithms

based on many-valued logic functions.

Objective. The purpose of this paper is to generalize the error propagation criterion and the strict avalanche criterion for the case

of functions of three-valued logic.

Method. The emergence of cryptography based on many-valued logic functions led to the understanding that today’s dominant

cryptographic algorithms based on binary algebraic constructions are only a special case of more general trends. Numerous researches show that the use of cryptographic constructions based on many-valued logic functions leads to the creation of cryptoalgorithms that more fully implement the principles of diffusion and confusion. One of the most important cases of many-valued logic functions are 3-functions, which are also used in quantum cryptography. This article is another step towards developing cryptographic constructions based on many-valued logic functions.

Results. The definition of the propagation criterion was extended to the case of functions of three-valued logic. On the basis of

the propagation criterion for the functions of three-valued logic, the definition of a strict avalanche criterion was introduced, which

describes the stability of cryptographic constructions against differential cryptanalysis attacks. We experimentally determined the

number of 3-functions of length N=9, satisfying the strict avalanche criterion. A method based on three constructive rules is proposed, which allows to synthesize a complete set of 864 S-boxes of length N=9 satisfying strict avalanche criterion. This set of Sboxes is basic for the application of Kim’s construction, which allows to recurrently increase the length of the S-box to the required

value. The paper shows that using Kim’s construction to increase the length preserves the S-box satisfying to a strict avalanche criterion, while allowing to obtain S-boxes with satisfactory non-linearity value as well as small output and input vectors correlation.

Conclusions. The most important criterion of cryptographic quality, which shows the stability of the cryptographic algorithm to

attacks of differential cryptanalysis is the propagation criterion that was generalized to the case of 3-functions. The existence of 3-

functions of length N=9 satisfying the strict avalanche criterion is shown, and their full set is found. On the basis of the proposed

constructive method, a complete set of S-boxes of length N=9 that satisfy the strict avalanche criterion was synthesized. It is shown that the Kim scheme can be applied to recurrently increase the length of S-boxes based on many-valued logic functions. As an actual direction for the continuation of the research, the development of regular and constructive methods for th

#### Keywords

#### Full Text:

PDF#### References

Stankovic R. S., Astola J. T., Moraga C. Representation of Multiple-Valued Logic Functions, Morgan & Claypool Publishers,

Synthesis lectures on digital circuits and systems, 2012, 153 p.

Sokolov A. V., Zhdanov O. N. Prospects for the Application of Many-Valued Logic Functions in Cryptography.

Springer, Cham, International Conference on Theory and Applications of Fuzzy Systems and Soft Computing, 2018,

pp. 331–339.

Korchenko O., Vasiliu E., Gnatyuk S. Modern quantum technologies of information security, Aviation. Vilnius,

Technika, 2010, No. 14 (2), pp. 58–69.

Hnatiuk S., Zhmurko T., Kinzeriavyi V., Seilova N. Method for quality evaluation of trit pseudorandom sequence to

cryptographic applications, Information technology and security, 2015, Vol. 3, No. 2, pp. 108–116.

Vol E. D. Quantum theory as a relevant framework for the statement of probabilistic and many-valued logic, International

Journal of Theoretical Physics, 2013, 52(2), pp. 514–523.

Stakhov A. Brousentsov’s ternary principle, Bergman’s number system and ternary mirror-symmetrical arithmetic,

The Computer Journal, 2002, 45(2), pp. 221–236.

Shannon, C.E. A Mathematical Theory of Cryptography, Bell system technical journal, 1948, Vol. 27, No. 3, pp. 379–423

Zhdanov O.N. Sokolov A.V. Block symmetric cryptographic algorithm based on principles of variable block

length and many-valued logic, Far East Journal of Electronics and Communications, 2015, Vol. 16, No. 3, pp. 573–589.

El Fishawy N. F., Zaid O. M. A. Quality of encryption measurement of bitmap images with RC6, MRC6, and

Rijndael block cipher algorithms, IJ Network Security, 2007, 5(3), pp. 241–251.

Sokolov, A.V., Constructive method for the synthesis of nonlinear S-boxes satisfying the strict avalanche criterion /

A.V. Sokolov. – Radioelectronics and Communications Systems, 2013. – Vol. 56. – No.8. – P. 415–423.

Sokolov A. V. Regular synthesis method of a complete class of ternary bent-sequences and their nonlinear properties,

Journal of Telecommunication, Electronic and Computer Engineering, 2016, Vol. 8, No. 9, pp. 39–43.

Mazurkov M. I., Sokolov A. V., Barabanov N. A. Synthesis method for bent sequences in the Vilenkin-Chrestenson basis,

Radioelectronics and Communications Systems, 2016, Vol. 59, No. 11, pp. 510–517.

Zhdanov O. N., Sokolov A. V. Algorithm of construction of optimal according to criterion of zero correlation nonbinary

S-boxes, Problems of physics, mathematics and technics, 2015, No. 3(24), pp. 94–97.

Zhdanov O. N., Sokolov A. V. Extending Nyberg construction on Galois fields of odd characteristic / O.N. Zhdanov, //

Radioelectronics and Communications Systems, 2017, Vol. 60, No. 12, pp. 538–544.

Sokolov A. V., Krasota N. I. Very nonlinear permutations:synthesis method for S-boxes with maximal 4-nonlinearity,

Proceeding of ONAT named after A. S. Popov, 2017, No.1, pp. 145–154.

Webster A. F., Tavares S. E. On the design of S-boxes, Proc. of CRYPTO’85. Springer-Verlag, 1985, pp. 523–534.

Chandrasekharappa T.G.S., Prema K. V., Kumara Shama S - boxes generated using Affine transformation giving maximum

avalanche effect, Int. J. Comput. Sci. Eng., 2011, Vol. 3, No. 9, pp. 3185–3193.

Chandrasekharappa T. G. S., Prema K. V., Shama Kumara Possible S-boxes generated from Affine transformation

those satisfy Maximum Strict Avalanche Criteria, Proceedings of World Academy of Science, Engineering and Technology,

, Vol. 60, pp. 880–883.

Trakhtman A. M., Trakhtman V. A. Fundamentals of the theory of discrete signals on finite intervals. Moscow, Soviet

Radio, 1975, 208 p.

Kim K. Construction of DES-like S-boxes based on Boolean functions satisfying the SAC, Lect. Notes Comput. Sci.,

, pp. 59–72.

Kim K., Matsumoto T., Imai H. A recursive construction method of S-boxes satisfying the strict avalanche criterion,

Proc. of CRYPTO90. Springer-Verlag, 1990, pp. 565–574.

#### GOST Style Citations

& Claypool Publishers, Synthesis lectures on digital circuits and systems, 2012. – 153 р.

2. Sokolov A. V. Prospects for the Application of Many- Valued Logic Functions in Cryptography / A. V. Sokolov,

O. N. Zhdanov. – Springer, Cham, International Conference on Theory and Applications of Fuzzy Systems and Soft

Computing, 2018. – P. 331–339.

3. Korchenko, O. Modern quantum technologies of information security / O. Korchenko, E. Vasiliu, S. Gnatyuk. –

Aviation. Vilnius : Technika, 2010. –No. 14 (2). – P. 58–69.

4. Метод оцінювання якості тритових псевдовипадкових послідовностей для криптографічних застосувань /

[С. Гнатюк, Т. Жмурко, В. Кінзерявий, Н. Сейлова]. – Інформаційні технології та безпека. – 2015. – Т. 3, № 2. –

С. 108–116.

5. Vol E. D. Quantum theory as a relevant framework for the statement of probabilistic and many-valued logic /

E. D. Vol. – International Journal of Theoretical Physics, 2013. – 52(2). – P. 514–523.

6. Stakhov A. Brousentsov’s ternary principle, Bergman’s number system and ternary mirror-symmetrical arithmetic /

A. Stakhov // The Computer Journal. – 2002. – 45(2). – P. 221–236.

7. Shannon C. E. A Mathematical Theory of Cryptography / C. E. Shannon // Bell system technical journal. – 1948. –

Vol. 27, No. 3. – P. 379–423

8. Zhdanov O. N. Block symmetric cryptographic algorithm based on principles of variable block length and manyvalued

logic / O. N. Zhdanov, A. V. Sokolov // Far East Journal of Electronics and Communications. – 2015. –

Vol. 16, No. 3. – P. 573–589.

9. El Fishawy N. F. Quality of encryption measurement of bitmap images with RC6, MRC6, and Rijndael block cipher

algorithms / N. F. El Fishawy, O. M. A. Zaid. – IJ Network Security, 2007. – 5(3). – P. 241–251.

10. Sokolov A. V. Constructive method for the synthesis of nonlinear S-boxes satisfying the strict avalanche criterion /

A. V. Sokolov // Radioelectronics and Communications Systems. – 2013. – Vol. 56, No. 8. – P. 415–423.

11. Sokolov A. V. Regular synthesis method of a complete class of ternary bent-sequences and their nonlinear properties /

A. V. Sokolov // Journal of Telecommunication, Electronic and Computer Engineering. – 2016. – Vol. 8, No. 9. – P. 39–43.

12. Mazurkov M. I. Synthesis method for bent sequences in the Vilenkin-Chrestenson basis / M. I. Mazurkov, A. V. Sokolov,

N. A. Barabanov // Radioelectronics and Communications Systems. – 2016. – Vol. 59, No. 11. – P. 510–517.

13. Жданов О. Н. Алгоритм построения оптимальных по критерию нулевой корреляции недвоичных блоков за-

мен / О. Н. Жданов, А. В. Соколов // Проблемы физики, математики и техники. – 2015. – № 3 (24). – С. 94–97.

14. Zhdanov O. N. Extending Nyberg construction on Galois fields of odd characteristic / O. N. Zhdanov, A. V. Sokolov

// Radioelectronics and Communications Systems. – 2017. – Vol. 60, No. 12. – P. 538–544.

15. Соколов А. В. Сильно нелинейные подстановки: метод синтеза S-блоков, обладающих максимальной 4-

нелинейностью / А. В. Соколов, Н. И. Красота. – Наукові праці ОНАЗ ім. О.С. Попова. – 2017. – № 1. – С. 145–154.

16. Webster A. F. On the design of S-boxes / A. F. Webster, S. E. Tavares // Proc. of CRYPTO’85. – Springer-Verlag,

1985. – P. 523–534.

17. Chandrasekharappa T. G. S. S-boxes generated using Affine transformation giving maximum avalanche effect /

T. G. S. Chandrasekharappa, K. V. Prema, Shama Kumara. // Int. J. Comput. Sci. Eng. – 2011. – Vol. 3, No. 9. –

P. 3185–3193.

18. Chandrasekharappa T. G. S. Possible S-boxes generated from Affine transformation those satisfy Maximum Strict

Avalanche Criteria / T. G. S. Chandrasekharappa, K. V. Prema, Kumara Shama. – Proceedings of World

Academy of Science, Engineering and Technology, 2009. – Vol. 60. – P. 880–883.

19. Трахтман А. М. Основы теории дискретных сигналов на конечных интервалах / А. М. Трахтман, В. А. Трахт-

ман. – М. : Советское радио, 1975. – 208 с.

20. Kim, K. Construction of DES-like S-boxes based on Boolean functions satisfying the SAC / K. Kim. – Lect. Notes

Comput. Sci., 1993. – P. 59–72.

21. Kim K. A recursive construction method of S-boxes satisfying the strict avalanche criterion / K. Kim, T. Matsumoto,

H. Imai // Proc. of CRYPTO90. – Springer-Verlag, 1990. – P. 565–574.

Copyright (c) 2020 A. V. Sokolov, O. N. Zhdanov

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

**Address of the journal editorial office:**

Editorial office of the journal «Radio Electronics, Computer Science, Control»,

National University "Zaporizhzhia Polytechnic",

Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine.

Telephone: +38-061-769-82-96 – the Editing and Publishing Department.

E-mail: rvv@zntu.edu.ua

**The reference to the journal is obligatory in the cases of complete or partial use of its materials.**