DOI: https://doi.org/10.15588/1607-3274-2020-1-7

SIMULATION MODEL OF THE ADAPTIVE MAINTENANCE PROCEDURE OF COMPLEX RADIOELECTRONIC FACILITIES

S. V. Lienkov, H. B. Zhirov, I. V. Tolok, Ye. S. Lienkov

Abstract


Context. The process of maintenance of modern radio-electronic facilities is aimed at supporting the serviceability or performance of the facilities during their technical operation. Specifications for achieving high reliability of operation are often contrary to other required characteristics, such as reducing the size of the product, obtaining high accuracy, reducing the cost of operation, etc. Therefore, the problem of the optimal choice of maintenance parameters to solve various tasks of operation using different criteria is relevant.

Objective. The objective of this research is developing approaches to determine the optimal parameters of the process of adaptive maintenance.

Method. Within the framework of the general simulation statistic model of the process of maintenance and repair of a complex facility (REF), we have developed a simulation model for parameter optimization of one of the maintenance strategies. The general simulation statistic model is intended to simulate the process of the TMR of the FEF in order to predict the reliability and value of the facility operation. Optimization of maintenance parameters improves both indicators of reliability of the facility and economic indicators of operation of the facility as a whole. The parameters are optimized on the basis of the criterion of a minimum specific cost of the REF operation or the criterion of the maximum ratio of technical use. In both cases, limitation means the required value of the mean time between failures of the facility, and as a method of optimization, we use the method of directed search within the scope of the maintenance parameters. An expert can participate in the process of finding an optimal solution, being involved in the analysis of intermediate data and making a decision on the completion of the search process.

Results. The improved method of optimizing the maintenance parameters is a mathematical and algorithmic basis for the general software of the simulation statistic model of the maintenance and repair process. The method is programmed and tested in solving testing tasks. The results of the computational experiment are illustrated in the tabular form.

Conclusions. In our work we have developed the simulation model of the process of adaptive maintenance of a complex radioelectronic facility. The model enables to substantially simplify and automate the process of research and optimization of the adaptive maintenance parameters of a complex radio-electronic facility. By adding the least reliable elements gradually to a plurality of items subject to servicing and modeling the random moments of the failure time, the simulation model calculates the optimal maintenance options with the adaptive time of condition monitoring. The simulation model is based on the algorithmic model and algorithmic optimization methods for adaptive maintenance, developed in our research, and works in the ISMPN software environment. As a method of optimization, we use the method of directed search within the scope of the maintenance parameters, with a DN distribution as a mathematical reliability model for electronic components and DM distribution for mechanical components.

The practical value of the research lies in developing software which optimizes the maintenance parameters and predicts the reliability and value of operation for the given REF. The results obtained are to be used when determining the requirements for the parameters of operation of both new facilities and those of the available stock. 


Keywords


Optimization of maintenance parameters, adaptive maintenance.

Full Text:

PDF

References


Lenkov S., Tolok I., Tsitsarev V., Zhyrov G., Lenkov E., Khlaponin Yu., Borowik B. eds. Forecasting reliability of complex technology objects. Parameters optimization of their technical exploitation: monograph. Bielsko-Biala, Publishing house «BEL», 2018, 253 p.

Zhirov G. B., Lenkov E. S. Algoritmi modeliuvannia protsesіv tehnіchno-go obslugovuvannia za stanom skladnih radіoelektronnih ob’єktіv, Radio Electronics, Computer Science, Control, 2018, No. 2(45), pp. 14–21. DOI: 10.15588/1607-3274-2018-2-2.

Zhirov G.B., Lenkov Є. S., Tolok І. V. Analіz matematichnih modelei tehnіchnogo obslugovuvannia skladnih tehnіchnih ob єktіv, Zbіrnik naukovih prats’ Harkіvs’kogo unіversitetu Povіtrianih Sil, 2017, Vip.2(51), pp. 153–158.

Lenkov S. V., Sєliukov O. V., Tolok І. V. i dr. Matematichna model’ protsesіv vitrachannia ta popovnen-nia resursu ugrupovannia skladnih tehnіchnih ob’єktіv, Nauka і tehnіka Povіtrianih Sil ZSU, 2018, No. 2 (31), pp. 174–181.

Faddoul R., Raphael W., Chateauneuf A.Maintenance optimization of series systems subject to reliability constraints, Reliability Engineering & System Safety, 2018, No. 180, pp. 179–188. DOI: 10.1016/j.ress.2018.07.016.

Khatab A., Diallo C., Venkatadri U., Liu Z., Aghezzaf E.-H. Optimization of the joint selective maintenance and repairperson assignment problem under imperfect maintenance, Computers & Industrial Engineering, 2018, No. 125, pp. 413–422. DOI: 10.1016/j.cie.2018.09.012.

Martinod R., Bistorin O., Leonel F., Castañeda L., Rezg N. Maintenance policy optimisation for multi-component systems considering degradation of components and imperfect maintenanceactions, Computers & Industrial Engineering, 2018, pp. 100–112. DOI: 10.1016/j.cie.2018.07.019.

Shayesteh E., Yu J., Hilber P. Maintenance optimization of power systems with renewable energy sources integrated, Energy, 2018, No. 149, pp. 577–586. DOI: 10.1016/j.energy.2018.02.066.

Briš R., Byczanski P., Goňo R., Rusek S. Discrete maintenance optimization of complex multi-component systems, Reliability Engineering & System Safety, 2017, No. 168, pp. 80–89. DOI: 10.1016/j.ress.2017.04.008.

Belyi D., Popova E., Morton D., Damien P. Bayesian failure-rate modeling and preventive maintenance optimization, European Journal of Operational Research, 2017, No. 262, Issue 3, pp. 1085–1093. DOI: 10.1016/j.ejor.2017.04.019.

Rawat M., Kumar L. B. Novel approach for machine tool maintenance modelling and optimization using fleet system architecture, Computers & Industrial Engineering, 2018, No. 126, pp. 47–62. DOI: 10.1016/j.cie.2018.09.006.

Wijk O., Andersson P., Block J., Righard T. Phase-out maintenance optimization for an aircraft fleet, International Journal of Production Economics, 2017, No. 188, pp. 105– 115. DOI: 10.1016/j.ijpe.2017.01.002.

Ye Yixin, Grossmann I. E., Pinto J. M., Ramaswamy S. Modeling for reliability optimization of system design and maintenance based on Markov chain theory, Computers & Chemical Engineering, 2019, No. 124, pp. 381–404. DOI: 10.1016/j.compchemeng.2019.02.016.

Vartanjan V. M., Romanenkov Ju. O., Revenko D. S., i dr. Modeljuvannja dynamichnyh procesiv po chasovyh rjadah: monografija. Harkіv, Nac. aerokosm. un-t im. M. Je. Zhukovs’kogo «Har’k. aviac. in-t», 2012, 266 p.

Rendon-Sanchez J., Menezes L. Structural combination of seasonal exponential smoothing forecasts applied to load forecasting, European Journal of Operational Research, 2019, Vol. 275, Issue 1, pp. 916–924. DOI: 10.1016/j.ejor.2018.12.013.

Ashurkov I. S., Leshko N. A., Kakaev V. V. Ispol’zovanie metoda priamogo perebora dlia optimizatsii prostranstvennoi struktury mnogopo-zitsionnoi radiolokatsionnoi sistemy [Elektr. resurs]. Rezhim dostupa http://trudymai.ru/published.php?ID=69752


GOST Style Citations


1. Forecasting reliability of complex technology objects. Parameters optimization of their technical exploitation: monograph / [eds.: S. Lenkov, I. Tolok, V. Tsitsarev, G. Zhyrov, E. Lenkov, Yu. Khlaponin, B. Borowik]. – Bielsko-Biala: Publishing house «BEL », 2018. – 253 p.

2. Жиров Г.Б. Алгоритми моделювання процесів технічного обслуговування за станом складних радіоелектронних об’єктів / Г. Б. Жиров, Е. С. Ленков // Радіоелектроніка, інформатика, управління. – 2018. – №2(45). – С. 14–21. DOI: 10.15588/1607-3274-2018-2-2.

3. Жиров Г. Б. Аналіз математичних моделей технічного обслуговування складних технічних об єктів / Г. Б. Жиров, Є. С. Лєнков, І. В. Толок // Збірник наукових праць Харківського університету Повітряних Сил. – 2017. – Вип. 2(51). – С. 153–158.

4. Математична модель процесів витрачання та поповнення ресурсу угруповання складних технічних об’єктів / [С. В. Лєнков, О. В.Сєлюков, І. В. Толок и др.] // Наука і техніка Повітряних Сил ЗСУ. – 2018. – №. 2 (31). – С. 174– 181.

5. Faddoul R. Maintenance optimization of series systems subject to reliability constraints / R. Faddoul, W. Raphael, A.Chateauneuf // Reliability Engineering & System Safety. – 2018. – № 180. – Р. 179–188. DOI: 10.1016/j.ress.2018.07.016.

6. Optimization of the joint selective maintenance and repairperson assignment problem under imperfect maintenance / [A. Khatab, C. Diallo, U. Venkatadri, Z. Liu, E.-H. Aghezzaf] // Computers & Industrial Engineering. – 2018. – № 125. – Р. 413–422. DOI: 10.1016/j.cie.2018.09.012.

7. Maintenance policy optimisation for multi-component systems considering degradation of components and imperfect maintenanceactions / [R. Martinod, O. Bistorin, F. Leonel et al.] // Computers & Industrial Engineering. – 2018. – P. 100–112. DOI:10.1016/j.cie.2018.07.019.

8. Shayesteh E. Maintenance optimization of power systems with renewable energy sources integrated / E. Shayesteh, J. Yu,
P. Hilber // Energy. – 2018. – №. 149. – P. 577–586. DOI: 10.1016/j.energy.2018.02.066.

9. Discrete maintenance optimization of complex multicomponent systems / [Briš R., Byczanski P., Goňo R., Rusek S.] // Reliability Engineering & System Safety. – 2017. – №. 168. – P. 80–89. DOI: 10.1016/j.ress.2017.04.008.

10. Bayesian failure-rate modeling and preventive maintenance optimization / [Dmitriy Belyi, Elmira Popova, David P.Morton, Paul Damien] // European Journal of Operational Research. – 2017. – № 262, Issue 3. – Р. 1085–1093. DOI: 10.1016/j.ejor.2017.04.019.

11. Rawat M. Novel approach for machine tool maintenance modelling and optimization using fleet system architecture / M. Rawat, B. K. Lad // Computers & Industrial Engineering. – 2018. – № 126. – Р. 47–62. DOI: 10.1016/j.cie.2018.09.006.

12. Phase-out maintenance optimization for an aircraft fleet / [O. Wijk, P. Andersson, J. Block, T. Righard] //International Journal of Production Economics. – 2017. – № 188. – Р. 105– 115. DOI: 10.1016/j.ijpe.2017.01.002.

13. Modeling for reliability optimization of system design and maintenance based on Markov chain theory / [Ye Yixin, I. E. Grossmann, J. M. Pinto, S. Ramaswamy] // Computers & Chemical Engineering. – 2019. – № 124. – Р. 381–404. DOI: 10.1016/j.compchemeng.2019.02.016.

14. Моделювання динамічних процесів по часових рядах: монографія: / [В. М. Вартанян, Ю. О. Романенков, Д. С. Ревенко, и др.] – Х. : Нац. аерокосм. ун-т ім. М. Є. Жуковського «Харьк. авіац. ін-т», 2012. – 266 с.

15. Rendon-Sanchez J. Structural combination of seasonal exponential smoothing forecasts applied to load forecasting / J. RendonSanchez, L. Menezes // European Journal of Operational Research. – 2019. – Vol. 275, Issue 1. – P. 916–924. DOI: 10.1016/j.ejor.2018.12.013.

16. Ашурков И. С. Использование метода прямого перебора для оптимизации пространственной структуры многопозиционной радиолокационной системы [Электр. ресурс] / И. С. Ашурков, Н. А. Лешко, В. В. Какаев. – Режим доступа http://trudymai.ru/published.php?ID=69752.







Copyright (c) 2020 S. V. Lienkov, H. B. Zhirov, I. V. Tolok, Ye. S. Lienkov

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.