DOI: https://doi.org/10.15588/1607-3274-2020-1-9

### SYNTHESIS METHOD OF TERNARY BENT-FUNCTIONS OF THREE VARIABLES

#### Abstract

Context. Such perfect algebraic constructions of many-valued logic as ternary bent-functions and their truth tables which are called as 3-bent-sequences, are used very often in modern cryptographic algorithms, in particular, in pseudorandom sequence generators. However, today there are no methods for synthesizing the ternary bent-functions class for a number of variables greater than two, which significantly limits the ability to scale the number of protection levels of the of pseudorandom sequence generators based on the ternary bent-functions. This circumstance generates the task of developing methods for the synthesis of ternary bent-functions, which is solved in this paper for the case of ternary bent-functions of three variables. The object of this research is the process of efficiency increasing of the cryptographic algorithms based on the functions of many-valued logic.

Objective. The purpose of the paper is to construct a method for the synthesis of the set of ternary bent-functions of three variables.

Method. The mathematical apparatus of the Reed-Muller transform (algebraic normal form) was used as the basis of the proposed constructive method for the synthesis of ternary bent-functions of three variables. So, on the basis of the established properties of the algebraic normal form of ternary bent-functions and limited enumeration, the search for ternary bent-functions up to affine terms is performed, after which we apply the procedure of reproduction.

Results. As a result of using of the proposed method for the synthesis of ternary bent-functions of three variables, 155844 3-bentsequences were found up to an affine term, while the cardinality of the full set of found 3-bent-sequences is 12623364. The research performed made it possible to determine that in this set there are 3-bent-sequences of six different weight structures, on the basis of which 12 different triple sets can be compiled for use in pseudorandom sequence generators. A scheme for a cryptographically stable pseudorandom sequence generator based on the found set of 3-bent-sequences of length N = 27 is proposed. It is shown that the protection levels number of such a generator of pseudorandom sequences is 41 7.041 10 which is comparable with the protection levels number of modern block symmetric cryptographic algorithms, for example, AES-128.

Conclusions. The further development of modern cryptographic algorithms, in particular, cryptographically stable pseudorandom sequence generators, is largely based on the use of perfect algebraic constructions of many-valued logic. For the first time, a constructive method for the synthesis of ternary bent-functions of three variables is proposed. For the found set of ternary bent-functions, the distribution of weight structures is found, and the possible triple sets are established. Based on the constructed set of ternary bentfunctions, a pseudorandom sequence generator scheme is proposed that has a protection levels number that is comparable with modern block symmetric cryptographic algorithms. We note that the constructed class of ternary bent-functions can also be used for the synthesis of cryptographically strong S-boxes, codes of constant amplitude, as well as error correction codes. As an actual area of further research, we can note the development of methods for the synthesis of ternary bent-functions of a larger number of variables.

#### Keywords

#### Full Text:

PDF#### References

Sokolov A. V., Zhdanov O. N. Prospects for the Application of Many-Valued Logic Functions in Cryptography, Theory and Applications of Fuzzy Systems and Soft Computing : International Conference, 18–20 January 2018 : proceedings. Kiev, 2018, pp. 331–339.

Ali Md. A., Ali E., Habib Md. A. et al. Pseudo Random Ternary Sequence and Its Autocorrelation Property Over Finite Field, Computer Network and Information Security, 2017, No. 9, pp. 54–63.

Epstain G. Multiple-valued logic design: an introduction. Boca Raton, CRC Press, 1993, 370 p.

Zhenxian F., Ying L. Ternary Error Correcting Codes, Chinese Science Abstracts Series A, 1995, P. 54.

Falkowski B. J., Olejnicka B. T. Multiple-valued and spectral approach to lossless compression of binary, gray scale and color biomedical images, Multiple-Valued Logic : 32nd IEEE International Symposium, 15–18 May 2002 : proceedings. Boston, 2002, pp. 136–142.

Falkowski B. J., Yan S. Application of Sign Hadamard-Haar Transform in Ternary Communication System, International Journal of Electronics, 1995, Vol. 79(5), pp. 551–559.

Gnatyuk S. O., Zhmurko T. O., Kinzeryavyy V. M. et al. Method of trit pseudorandom sequences generating for quantum cryptography systems, Ukrainian Scientific Journal of Information Security, 2015, Vol. 21, No. 2, P. 140– 147.

Gnatyuk S. O., Zhmurko T. O., Kіnzeryavy V.M. et al. Method for quality evaluation of trit pseudorandom sequence to cryptographic applications, Information Technology and Security, 2015, Vol. 3, No. 2(5), pp. 108–116.

Sokolov A. V., Zhdanov O. N., Barabanov N. A. Pseudorandom key sequence generator based on triple sets of bent-functions, Problems of physics, mathematics and technics, 2016, No. 1(26), pp. 85–91.

Trachtman A. M., Trachtman V. A. Fundamentals of the theory of discrete signals on finite intervals. Moscow, Sov. radio, 1975, 208 p.

Zhdanov O. N., Sokolov A. V. A synthesis method of basic ternary bent-squares based on the triad shift operator, System analysis and applied information science, 2017, No. 1, pp. 77–85.

Sokolov A. V., Zhdanov O. N. Regular synthesis method of a complete class of ternary bent-sequences and their nonlinear properties, Journal of Telecommunication, Electronic and Computer Engineering, 2016, Vol. 8, No. 9, pp. 39–43.

Stankovic R. S., Astola J. T., Moraga C. Representation of Multiple-Valued Logic Functions, Morgan & Claypool Publishers, Synthesis lectures on digital circuits and systems, 2012, 153 p.

Burlekamp E. Algebraic Theory of Coding. Singapore, World Scientific Publishing Co, 2015, 501 p.

FIPS 197. Advanced encryption standard [Electronic resource], 2001, Access mode: http://csrc.nist.gov/publications/

Schneier B. Applied Cryptography. 2-nd edition. New York, John Wiley & Sons, 1996, 758 p.

#### GOST Style Citations

1. Sokolov A.V. Prospects for the Application of Many-Valued Logic Functions in Cryptography / A. V. Sokolov, O. N. Zhdanov // Theory and Applications of Fuzzy Systems and Soft Computing : International Conference, 18–20 January 2018 : proceedings. – Kiev, 2018. – P. 331–339.

2. Pseudo Random Ternary Sequence and Its Autocorrelation Property Over Finite Field / [Md. A. Ali, E. Ali, Md. A. Habib et al.] // Computer Network and Information Security. – 2017. – No. 9. – P. 54–63.

3. Epstain G. Multiple-valued logic design: an introduction / G. Epstain. – Boca Raton : CRC Press, 1993. – 370 p.

4. Zhenxian F. Ternary Error Correcting Codes / F. Zhenxian, L. Ying // Chinese Science Abstracts Series A. – 1995. – P. 54.

5. Falkowski B.J. Multiple-valued and spectral approach to lossless compression of binary, gray scale and color biomedical images / B. J. Falkowski, B. T. Olejnicka // Multiple-Valued Logic : 32nd IEEE International Symposium, 15–18 May 2002 : proceedings. – Boston, 2002. – P. 136–142.

6. Falkowski B. J. Application of Sign Hadamard-Haar Transform in Ternary Communication System / B. J. Falkowski, S. Yan // International Journal of Electronics. – 1995. – Vol. 79(5). – P. 551–559.

7. Метод генерування тритових псевдовипадкових послідовностей для систем квантової криптографії / [С. О. Гнатюк, Т. О. Жмурко, В. М. Кінзерявий та ін.] // Безпека інформації. – 2015. – Т. 21, № 2. – С. 140–147.

8. Метод оцінювання якості трійкових псевдовипадкових послідовностей для криптографічних застосувань / [С. О. Гнатюк, Т. О. Жмурко, В. М. Кінзерявий та ін.] //

Information Technology and Security. – 2015. – Т. 3, № 2(5). – С. 108–116.

9. Соколов А.В. Генератор псевдослучайных ключевых последовательностей на основе тройственных наборов бент-функций / А. В. Соколов, О. Н. Жданов, Н. А. Барабанов // Проблемы физики, математики и техники. – 2016. – №1(26). – С. 85–91.

10. Трахтман A. M. Основы теории дискретных сигналов на конечных интервалах / A. M. Трахтман, В. А. Трахтман. – М. : Сов. радио, 1975. – 208 с.

11. Жданов О. Н. Метод синтеза базовых троичных бентквадратов на основе оператора триадного сдвига / О. Н. Жданов, А. В. Соколов // Системный анализ и прикладная информатика. – 2017. – № 1. – С. 77 – 85.

12. Sokolov A. V. Regular synthesis method of a complete class of ternary bent-sequences and their nonlinear properties / A. V. Sokolov, O. N. Zhdanov // Journal of Telecommunication, Electronic and Computer Engineering. – 2016. – Vol. 8, No. 9. – P. 39–43.

13. Stankovic R. S. Representation of Multiple-Valued Logic Functions / R. S. Stankovic, J. T. Astola, C. Moraga. – Morgan & Claypool Publishers, Synthesis lectures on digital circuits and systems, 2012. –153 p.

14. Burlekamp E. Algebraic Theory of Coding / E. Burlekamp. – Singapore : World Scientific Publishing Co, 2015. – 501 p.

15. FIPS 197. Advanced encryption standard [Electronic resource]. – 2001. – Access mode: http://csrc.nist.gov/publications/

16. Schneier B. Applied Cryptography. 2-nd edition / B. Schneier. – New York : John Wiley & Sons, 1996. – 758 p.

Copyright (c) 2020 A. V. Sokolov

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

**Address of the journal editorial office:**

Editorial office of the journal «Radio Electronics, Computer Science, Control»,

National University "Zaporizhzhia Polytechnic",

Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine.

Telephone: +38-061-769-82-96 – the Editing and Publishing Department.

E-mail: rvv@zntu.edu.ua

**The reference to the journal is obligatory in the cases of complete or partial use of its materials.**