DOI: https://doi.org/10.15588/1607-3274-2020-1-15

DIAGNOSTIC SYSTEM OF PERCEPTION OF NAVIGATION DANGER WHEN IMPLEMENTATION COMPLICATED MANEUVERS

P. S. Nosov, S. M. Zinchenko, I. S. Popovych, A. P. Ben, Y. А. Nahrybelnyi, V. M. Mateichuk

Abstract


Context. The article focuses on the question of automated decision-making analysis made by the operator in ergatic systems of critical infrastructures on the example of marine transport control in difficult navigation conditions. It is evident enough that the main criterion for an adequate perception of input information done by an operator is highly likely to predict the choice of behavioral decision-making strategies in discrete time conditions. However, the difficulty of modeling the operator’s actions is found to be lying in non-linear pattern of taking definite decisions in emergency situations and deviations from the Codes and Rules.

Objective. The research purpose strategy of conducted investigation can be defined as the development of the mathematical platform for a decision support system (DSS) module with an aim to identify the class-forming set of atomic elements. In particular this issue determines the fact of distortion of the perception of information about navigation risks predicting the operator’s behavior pattern while having vessel running process. This is possible to have it depicted through formal analysis.

Method. To capture the analysis of danger perception by the operator the paper introduces a mathematical model of data collection which identifies the fact of perception distortion in the form of attribute space of metadata obtained by the method of converting information from navigation devices. Besides, the factor of disorientation of the operator can be considered to be a shift on a displaced bridge which significantly affects on the analysis of information for adequate decision making. In addition, taking into account the failure of navigation equipment such as: RADAR, ARPA, AIS, ECDIS, especially while doing exit from the automatic control mode, a dangerous precedent can possibly be created for the operator not ready to perceive the complexity of the situation. To make it work a formal analysis was carried out using the extending risks possibility level tasks during the transition under these conditions. In addition to this item, a probabilistic model of perceiving the situation under the conditions of the error set is reported to have been constructed. So, as the result, the modeling process turned out to show the definite evidence of getting no way possibility to have the degree of criticality of the navigation situation determined without a clear identification of factors affecting the distortion of perception of the operator. Nevertheless, generalized statistical data are sure to be not enough and there is a special need of taking into account an individual information model of each operator for the effective work of DSS as this process faces real challenges. It must be significantly noticed that in order to analyze the perception of information by the operator a special test for defining preferences when choosing a strategy of control actions in the form of maneuvering under difficult navigation conditions purpose was created. Regarding the test results, as well as data on the passage of locations, certain attention is advised to be drawn to the classification analysis of 15 parameters using artificial neural networks having been carried out by our team and, as a consequence, the boundaries of deviations in the perception of navigational danger were found out and clarified. Additional superior item to be spoken about is certainly the introduction of rules and algorithms having been welcomed into the DSS core including the following: interaction field, RADAR and NIS synchronization tools; actual navigational hazard in a given cartographic area; ships trajectories and, as a result, simulations of probable deviations in the information perception of the operator.

Results. In order to meet beneficial agreement between the effectiveness of the developed DSS with the proposed formalanalytical approaches an experiment was assumed to be appropriate to be conducted using the Navi Trainer 5000 navigation simulator (NTPRO 5000). Based on the foregoing, due to comprehensive results in experiment metadata for the 2.5 years of operation of navigation simulators and DSS software tools the identification of the deviation probabilities in the information perception of dangers was achieved and export the predicted data to new locations for the operator and cartographic areas was performed. Undoubtedly, the experimental investigation confirmed the hypothesis of the study and reflected completely the feasibility of using this DSS to make predictions of possible risks when control the vessel by analyzing the information model of the operator.

Conclusions. Formal-analytical approaches presented in the study combined with the developed DSS software tools and the information itself made it possible to classify the decision-making strategies of the operator when control the vessel and to predict the probability of catastrophic consequences. The feasibility of the proposed models and methods was successfully revealed by carried out experiments. 


Keywords


Decision support systems; operator information model; computer navigation simulators; probability of risks; human factor information analysis, automated control systems, automatic control systems.

Full Text:

PDF

References


Puisa R., Lin L., Bolbot V. et al. Unravelling causal factors of maritime incidents and accidents, Safety Science, 2018, Vol. 110(A), pp. 124–141. DOI: 10.1016/j.ssci.2018.08.001.

Tran N. K., Haasis H. D. A research on operational patterns in container liner shipping, Transport, 2018, Vol. 33, Issue 3, pp. 619–632. DOI: 10.3846/transport.2018.1571.

Topolšek D., Dragan D. Relationships between the motorcyclists’ behavioural perception and their actual behavior, Transport, 2018, Vol. 33, Issue 1, pp. 151–164. DOI: 10.3846/16484142.2016.1141371.

Nosov P. S., Palamarchuk I. V., Safonov M. S. et al. Modeling the manifestation of the human factor of the maritime crew, Science and transport progress, 2018, Vol. 5, Issue 77, pp. 82–92. DOI:10.15802/stp2018/ 147937.

Pytev Yu. M. Reliability of interpretation of an experiment based on an approximate model, Math modeling, 1989, Vol. 1, Issue 2, pp. 49–64.

Stepantsov M. E. Mathematical model for the directed motion of a people group, Math modeling, 2004, Vol. 16, Issue 3, pp. 43–49.

[Nosov P. S., Ben A. P., Matejchuk V. N. et al. Identification of “Human error” negative manifestation in maritime transport, Radio Electronics, Computer Science, Control, 2018, Vol. 4, Issue 47, pp. 204–213. DOI: 10.15588/16073274-2018-4-20.

Bole A., Wall A., Norris A. Navigation Techniques Using Radar and ARPA, Radar and ARPA Manual: Third Edition. Butterworth-Heinemann, 2014, pp. 371–405. DOI: 10.1016/B978-0-08-097752-2.00008-8.

Zinchenko S. M., Nosov P. S., Mateichuk V. M. et al. Use of navigation simulator for development and testing ship control systems, The international scientific and practical conference dedicated to the memory of professors Fomin Y. Y. and Semenov V. S. Odessa. Stambul, 24–28 April 2019, proceedings. ONMU, 2019, pp. 350–355.

Shiqi F., Jinfen Z., Eduardo B. D. et al. Effects of seafarers emotion on human performance using bridge simulation, Ocean Engineering, 2018, Vol. 170, pp. 111–119. DOI: 10.1016/j.oceaneng.2018. 10.021.

Popovych I. S., Blynova O. Ye. The structure, variables and interdependence of the factors of mental states of expectations in students’ academic and professional activities, The New Educational Review, 2019, Vol. 55, Issue 1, pp. 293– 306. DOI: 10.15804/ tner.2019.55.1.24.

COLREGS – International Regulations for Preventing Collisions at Sea [Electronic resource]. Access mode: http://www.jag.navy.mil/distrib/instructions/COLREG -1972.pdf

Xi Y., Yang Z. , Fang Q. et al. A new hybrid approach to human error probability quantification-applications in maritime operations, Ocean Engineering, 2017, Vol. 138, pp. 45–54. DOI: 10.1016/j.oceaneng.2017. 04.018.

Akyuz E. Quantitative human error assessment during abandon ship procedures in maritime transportation, Ocean Engineering, 2016, Vol. 120, pp. 21–29. DOI:10.1016/j.oceaneng.2016.05. 017.

Park Y. A., Yip T. L., Park H. G. An Analysis of Pilotage Marine Accidents in Korea, The Asian Journal of Shipping and Logistics, 2019, Vol. 35, Issue 1, pp. 49–54. DOI: 10.1016/j.ajsl.2019.03.007.

Nosov P., Ben A., Safonova A. et al. Formal going approaches to determination periods of intuitional behavior of navigator during supernumerary situations, Radio Electronics, Computer Science, Control, 2019, Vol. 2, Issue 49, pp. 140–150. DOI: 10.15588/1607-3274-2019-2-15.

Pauer G., Sipos T., Török Á. Statistical analysis of the effects of disruptive factors of driving in simulated environment, Transport, 2019, Vol. 34, Issue 1, P. 1–8. DOI: 10.3846/transport. 2019.6724.

Szlapczynski R., Krata P. Determining and visualizing safe motion parameters of a ship navigating in severe weather conditions, Ocean Engineering, 2018, Vol. 158, pp. 263– 274. DOI: 10.1016/ j.oceaneng. 2018.03.092.

Rolf J., Asbjorn B., Aalberg L. Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports, Reliability Engineering & System Safety, 2018, Vol. 176, pp. 174–186. DOI: 10.1016/j.ress.2018. 03.033.

Guidance notes on safety culture and leading indicators of safety, American Bureau of Shipping, 2012. Houston, Vol. 74.

Berg H. P. Human Factors and Safety Culture in Maritime Safety, The International Journal on Marine Navigation and Safety of Sea Transportation, 2013, Vol. 7, Issue 3, pp. 343– 352. DOI: 10.12716/1001.07.03.04.

Ventikos N., Papanikolaou A., Louzis K. et al. Statistical analysis and critical review of navigational accidents in adverse weather conditions, Ocean Engineering, 2018, Vol. 163, pp. 502–517. DOI: 10.1016/j.oceaneng. 2018.06.001.

[Paulauskas V., Paulauskas D., Plačienė B. et al. Ship mooring to jetties under the crosscurrent, Transport, 2018, Vol. 33, Issue 2, P. 454–460, DOI: 10.3846/ 16484142.2017.1354069.

Jech T. Set theory. Berlin, Springer, 1997, 753 p. DOI: 10.1007/3-540-44761-X.

Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard, 1991, 600 p.

Bain L. Introduction to Probability and Mathematical Statistics / L. J. Bain, M. Engelhardt. – Belmont : Duxbury Press, 1992. – 648 p.

Popovych I. S. Social expectations – a basic component of the system of adjusting of social conduct of a person, Australian Journal of Scientific Research, 2014, Vol. 2, Issue 6, pp. 393–398.

Dinh G. H. The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area, International Journal of e-Navigation and Maritime Economy, 2016, Vol. 4, pp. 97–108, DOI: 10.1016/j.enavi. 2016.06.009.

Olijnik A. O., Skrupskij S. Yu., Subbotin S. O. et al. Planuvannya resursiv paralelnoyi obchislyuvalnoyi sistemi pri sintezi nejronechitkih modelej dlya obrobki velikih danih, Radio Electronics, Computer Science, Control, 2016, Vol. 4. pp. 61–69. DOI 10.15588/ 1607-3274-2016-4-8.

Heiko R. The complexity of Nash equilibria, local optima, and Pareto-optimal solutions: thesis Doktors der Naturwissenschaften genehmigte Dissertation. RheinischWestf¨alischen, Erlangung, 2008, 171 p.

Prokopchuk Y. A. Sketch of the formal theory of creativity / Dnepr, PSACEA Press, 2017, 452 p.

Panin V. V., Doronin V. V., Spiyan O. M. Construction of a neural network expert system for navigation data processing in terms of river e-navigation, Radio Electronics, Computer Science, Control, 2019, Vol. 1, pp. 203–217. DOI 10.15588/1607-3274-2019-1-19.

De Luca M. A comparison between prediction power of artificial neural networks and multivariate analysis in road safety management, Transport, 2017, Vol. 32, Issue 4, pp. 379–385, DOI: 10.3846/ 16484142.2014.995702.

Firsov S. N., Pishchukhina O. A. Intelligent support of multilevel functional stability of control and navigation systems Radio Electronics, Computer Science, Control, 2018, Vol. 2. pp. 177–183. DOI 10.15588/1607-3274-2018-2-20.


GOST Style Citations


1. Unravelling causal factors of maritime incidents and accidents / [R. Puisa, L. Lin, V. Bolbot et al.] // Safety Science. – 2018. – Vol. 110(A). – P. 124–141. DOI: 10.1016/j.ssci. 2018.08.001.

2. Tran N. K. A research on operational patterns in container liner shipping / N. K. Tran, H. D. Haasis // Transport. – 2018. – Vol. 33, Issue 3. – P. 619–632. DOI: 10.3846/transport. 2018.1571.

3. Topolšek, D. Relationships between the motorcyclists’ behavioural perception and their actual behavior / D. Topolšek, D. Dragan // Transport. – 2018. – Vol. 33, Issue 1. – P. 151– 164. DOI: 10.3846/16484142.2016.1141371.

4. Modeling the manifestation of the human factor of the maritime crew / [P. S. Nosov, I. V. Palamarchuk, M. S. Safonov et al.] // Science and transport progress. – 2018. – Vol. 5, Issue 77. – P. 82–92. DOI:10.15802/stp2018/ 147937.

5. Пытьев Ю. М. Надежность интерпретации эксперимента, основанной на приближенной модели / Ю. М. Пытьев // Математическое моделирование. – 1989. – Том 1, Номер 2. – С. 49–64.

6. Степанцов М. Е. Математическая модель направленного движения группы людей / М. Е. Степанцов // Математическое моделирование. – 2004. – Том 16, Номер 3. – С. 43–49.

7. Identification of “Human error” negative manifestation in maritime transport / [P. S. Nosov, A. P. Ben, V. N. Matejchuk et al.] // Radio Electronics, Computer Science, Control. – 2018. – Vol. 4, Issue 47. – P. 204–213. DOI: 10.15588/1607-32742018-4-20.

8. Bole A. Navigation Techniques Using Radar and ARPA / A. Bole // Radar and ARPA Manual: Third Edition / A. Bole, A. Wall, A. Norris. – Butterworth-Heinemann, 2014. – P. 371–405. DOI: 10.1016/B978-0-08-097752-2.00008-8.

9. Use of navigation simulator for development and testing ship control systems / [S. M. Zinchenko, P. S. Nosov, V. M. Mateichuk at al.] // The international scientific and practical conference dedicated to the memory of professors Fomin Y. Y. and Semenov V. S., Odessa – Stambul, 24–28 April 2019, proceedings. – ONMU, 2019. – P. 350–355.

10. Effects of seafarers emotion on human performance using bridge simulation / [F. Shiqi, Z. Jinfen, B. D. Eduardo at al.] // Ocean Engineering. – 2018. – Vol. 170. – P. 111–119. DOI: 10.1016/j.oceaneng.2018. 10.021.

11. Popovych I. S. The structure, variables and interdependence of the factors of mental states of expectations in students’ academic and professional activities / I. S. Popovych, O. Ye. Blynova // The New Educational Review. – 2019. – Vol. 55, Issue 1. – P. 293–306. DOI:10.15804/ tner.2019.55.1.24.

12. COLREGS – International Regulations for Preventing Collisions at Sea [Electronic resource]. – Access mode: http://www.jag.navy.mil/distrib/instructions/COLREG-1972.pdf

13. A new hybrid approach to human error probability quantification–applications in maritime operations / [Y. Xi, Z. Yang, Q. Fang еt al.] // Ocean Engineering. – 2017. – Vol. 138. – P. 45–54. DOI: 10.1016/j.oceaneng.2017. 04.018.

14. Akyuz E. Quantitative human error assessment during abandon ship procedures in maritime transportation / E. Akyuz // Ocean Engineering. – 2016. – Vol. 120. – P. 21–29. DOI:10.1016/j.oceaneng.2016.05. 017.

15. Park Y. A. An Analysis of Pilotage Marine Accidents in Korea / Y. A. Park, T. L. Yip, H. G. Park // The Asian Journal of Shipping and Logistics. – 2019. – Vol. 35, Issue 1. – P. 49–54. DOI: 10.1016/j.ajsl.2019.03.007.

16. Formal going approaches to determination periods of intuitional behavior of navigator during supernumerary situations / [P. Nosov, A. Ben, A. Safonova at al.] // Radio Electronics, Computer Science, Control. – 2019. – Vol. 2, Issue 49. – P. 140–150. DOI: 10.15588/1607-3274-2019-2-15.

17. Pauer G. Statistical analysis of the effects of disruptive factors of driving in simulated environment / G. Pauer, T. Sipos, Á. Török // Transport. – 2019. – Vol. 34, Issue 1. – P. 1–8. DOI: 10.3846/transport. 2019.6724.

18. Szlapczynski R. Determining and visualizing safe motion parameters of a ship navigating in severe weather conditions / R. Szlapczynski, P. Krata // Ocean Engineering. – 2018. – Vol. 158. – P. 263–274. DOI: 10.1016/ j.oceaneng. 2018.03.092.

19. Rolf J. Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports / J. Rolf, B. Asbjorn, L. Aalberg // Reliability Engineering & System Safety. – 2018. – Vol. 176. – P. 174–186. DOI: 10.1016/j.ress.2018. 03.033.

20. Guidance notes on safety culture and leading indicators of safety / American Bureau of Shipping. – 2012. – Houston. – Vol. 74.

21. Berg H. P. Human Factors and Safety Culture in Maritime Safety / H. P. Berg // The International Journal on Marine Navigation and Safety of Sea Transportation. – 2013. – Vol. 7, Issue 3. – P. 343–352. DOI: 10.12716/1001.07.03.04.

22. Statistical analysis and critical review of navigational accidents in adverse weather conditions / [N. Ventikos, A. Papanikolaou, K. Louzis at al.] // Ocean Engineering. – 2018. – Vol. 163. – P. 502–517. DOI: 10.1016/j.oceaneng. 2018.06.001.

23. Ship mooring to jetties under the crosscurrent / [V. Paulauskas, D. Paulauskas, B. Plačienė at al.] // Transport. – 2018. Vol. 33, Issue 2. – P. 454–460, DOI: 10.3846/16484142. 2017.1354069.

24. Jech T. Set theory / T. Jech. – Berlin : Springer, 1997. – 753 p. DOI: 10.1007/3-540-44761-X.

25. Roger B. Game Theory: Analysis of Conflict / B. Roger, Myerson. – Harvard, 1991. – 600 p.

26. Bain L. Introduction to Probability and Mathematical Statistics / L. J. Bain, M. Engelhardt. – Belmont: Duxbury Press, 1992. – 648 p.

27. Popovych I. S. Social expectations – a basic component of the system of adjusting of social conduct of a person / I. S. Popovych // Australian Journal of Scientific Research. – 2014. Vol. 2, Issue 6. – P. 393–398.

28. Dinh G. H. The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area / G. H. Dinh, N. K. Im // International Journal of e-Navigation and Maritime Economy. – 2016. – Vol. 4. – P. 97–108. DOI: 10.1016/j.enavi. 2016.06.009.

29. Планування ресурсів паралельної обчислювальної системи при синтезі нейро-нечітких моделей для обробки великих даних / [А. О. Олійник, С. Ю. Скрупський, С. О. Субботін та ін.] // Radio Electronics, Computer Science, Control. – 2016. – Том. 4. – С. 61–69. DOI 10.15588/ 1607-3274-2016-4-8

30. Heiko R. The complexity of Nash equilibria, local optima, and Pareto-optimal solutions: thesis Doktors der Naturwissenschaften genehmigte Dissertation / R¨oglin Heiko. – Rheinisch – Westf¨alischen: Erlangung, 2008. – 171 p.

31. Прокопчук Ю. А. Набросок формальной теории творчества / Ю. А. Прокопчук.– Днепр : ГВУЗ «ПГАСА», 2017. – 452 с.

32. Панін В. В. Побудова нейромережевої експертної системи обробки навігаційних даних в умовах річкової е-навігації / В. В. Панін, В. В. Доронін, О. М. Спіян // Радіоелектроніка, інформатика, управління. – 2019. – Том. 1. – С. 203–217. DOI 10.15588/1607-3274-2019-1-19.

33. De Luca M. A comparison between prediction power of artificial neural networks and multivariate analysis in road safety management / M. De Luca // Transport. – 2017. –Vol. 32, Issue 4. – P. 379–385, DOI: 10.3846/ 16484142.2014.995702.

34. Firsov S. N. Intelligent support of multilevel functional stability of control and navigation systems / S. N. Firsov, O. A. Pishchukhina // Радіоелектроніка, інформатика, управління. – 2018. – Vol. 2. – P. 177–183. DOI 10.15588/16073274-2018-2-20.







Copyright (c) 2020 P. S. Nosov, S. M. Zinchenko, I. S. Popovych, A. P. Ben, Y. А. Nahrybelnyi, V. M. Mateichuk

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.