DOI: https://doi.org/10.15588/1607-3274-2020-2-2

ANALYSIS OF THE SYNCHRONISM ENTERING PROCESS ROBUSTNESS IN UAV’S RADIO CONTROL LINE WITH FHSS

O. M. Roma, S. V. Vasylenko, Ye. V. Peleshok, S. V. Honenko, B. A. Nikolayenko

Abstract


Context. The experience of joined forces operation in the east of the country has shown that in the process of completing tasks, an unmanned aerial vehicle (UAV) is forced to operate in a rather difficult environment. The most significant is the problem of ensuring the transfer of command commands between the aircraft and the ground control post in the face of powerful intentional interference by the enemy.  The work as a UAV control channel proposes the use of frequency-hopping spread spectrum (FHSS). When constructing the UAV control line with the FHSS, the main consideration should be given to the process of entering synchronism as the primary one in relation to the process of transmitting control commands.  Within this problem, it is necessary to evaluate the noise immunity of the process of entering into the synchronism of the UAV control line with the FHSS in the conditions of powerful intentional interference of the enemy. 

Objective. The purpose of the article is to analyze the noise immunity of the process of entering into the synchronism of the UAV radio control line with the FHSS in the conditions of the powerful intentional interference of the enemy. 

Methods. In the work, on the basis of the developed simulation model (SM) of the process of entering into synchronism of the UAV control line with the FHSS, a number of experiments and estimation of the noise immunity of the process of entering into the synchronism of the UAV control line with the FHSS under conditions of powerful intentional interference. 

Results. Using the developed SM, the dependence of the probability of true and false occurrence in the synchronism of the UAV control line with the FHSS for one cycle, one sub-cycle and one frequency position of transmission from different values of the signal-to-noise ratio at the affected and unaffected frequency of entry for different values characterizing interference. The simulation results are presented as graphs. 

Conclusions. Comparison of the simulation results with the analytical ones confirms the adequacy of the synthesized mathematical model of the process of entering into the synchronism of the UAV control line with the FHSS and allows to determine the optimal parameters of the algorithm of entering the synchronization that will be satisfied. 


Keywords


Broadband signals, frequency-hopping spread spectrum (FHSS), noise immunity, synchronism, simulation model, unmanned aerial vehicle (UAV).

Full Text:

PDF

References


Kozera C. Military use of unmanned aerial vehicles a historical study, Safety & Defense, 2018, Vol. 4 (1), pp. 17– 21. DOI: 10.37105/sd.4.

Udeanu, Gheorghe & Dobrescu, Alexandra & Oltean, Mihaela Unmanned aerial vehicle in military operations, Scientific research and education in the air force, 2016, Vol. 18, pp. 199–206. DOI: 10.19062/22473173.2016.18.1.26.

Yasechko M. N., Ochkurenko A. V., Kovalchuk A. A., Maksyuta D. V. Sovremennye radiotehnicheskie sredstva bor’by s bespilotnymi letatel’nymi apparatami v zone provedenija ATO, Collection of scientific works of Kharkiv University to the Swedes, 2015, No. 3 (44), pp. 54–57.

Maklashov V., Piganov M. Method of unification of electronic warfare means, Reliability & Quality of Complex Systems, 2019. DOI: 10.21685/2307-4205-2019-3-3.

Yerohin V. V., Roma O. M., Vasylenko S. V., Bezdrabko D. E. Matematychna model’ perehoplennja odynychnogo strybka sygnalu peredavacha z PPRCh, Bulletin of NTUU “KPI” Series Radio Engineering, Radio Engineering, 2016, Issue 64, pp. 75–85. DOI: 10.20535/RADAP.2016.64.75-85.

Bilenko A. P., Volkov L. N. Sravnenie pomehozashhishhennosti radiolinij s shirokopolosnymi signalami, Radio engineering, 1986, No. 4, pp. 19–21.

Mischenko V. G., Erokhin V. F. Metodyka ocinky zavadozahyshhenosti algorytmiv vhodzhennja v synhronizm radiolinii’ z psevdovypadkovym perelashtuvannjam radiochastoty, Information Protection, 2001, No. 2, pp. 32– 59.

Roma O.M., Vasilenko S. V. Vybir parametriv algorytmu vhodzhennja v synhronizm radiolinii’ upravlinnja bezpilotnym lital’nym aparatom z psevdovypadkovym perenalashtuvannjam robochoi’ chastoty, Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, 2016, No. 54, pp. 71–78.

Roma O. M., Vasilenko S. V. Osnovy pobudovy zavadozahyshhenoi’ radiolinii’ upravlinnja bezpilotnym lital’nym aparatom, Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, 2015, No. 49, pp. 97–104.

Chudnov A. M. Ob adaptivnyh algoritmah psevdosluchajnogo perekljuchenija rabochih chastot

radiolinij v uslovijah sluchajnyh i prednamerennyh pomeh, Zhurnal radioelektroniki, 2015, No. 4.

Nahorniuk O. A. Metod avtomatychnogo vyznachennja chasovyh parametriv radiosygnaliv iz psevdovypadkovym perestrojuvannjam robochoi’ chastoty na foni vuz’kosmugovyh pereshkod, Zbirnyk naukovykh prats ZhVI, 2018, No. 15, pp. 53–64.

Fernández de Gorostiza, Berzosa J. , Mabe J., Cortiñas R. A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications, Sensors, 2018, Vol. 18, Issue 2, pp. 657. DOI: https://doi.org/10.3390/s18020657.

Krivenko O. V. Metodyka formuvannja sygnalu v radiozasobah z PPRCh v umovah vplyvu navmysnyh shumovyh zavad, Systemy ozbroiennia i viiskova tekhnika, 2017, No. 1, pp. 132–135.

Gurski T. G., Krivenko O. V. Metodyka formuvannja sygnalu v radiozasobah z PPRCh pry peredachi movy v umovah vplyvu zavad u vidpovid’, Systemy upravlinnia, navihatsiyi ta zviazku, 2017, No. 2, pp. 179–184.

Lei Z., Yang P., Zheng L. Detection and Frequency Estimation of Frequency Hopping Spread Spectrum Signals Based on Channelized Modulated Wideband Converters, Electronics, 2018, Vol. 7, Issue 9, P. 170. DOI: https://doi.org/10.3390/electronics7090170.

Kanaa A., Sha’ameri A. A robust parameter estimation of FHSS signals using time–frequency analysis in a noncooperative environment, Physical Communication, 2018, Vol. 26, pp. 9–20. DOI: https://doi.org/10.1016/j.phycom.2017.10.013.

Berezyuk M. V. Zavadozahyshhenist’ synhronizacii’ radiolinii’ z PPRCh ta fiksovanym naborom chastot vhodzhennja. Priority directions for the development of telecommunication systems and special-purpose networks, Collection of materials IV scientific conference. Kyiv, VITI NTUU “KPI”, 2007, P. 58.

Piskun S. G. Zavadozahyshhenist’ typovyh algorytmiv vhodzhennja v synhronizm linij i system zv’jazku z psevdovypadkovym perelashtuvannjam robochoi’ chastity, Priority directions for the development of telecommunication systems and special-purpose networks : Collection of materials V scientific conference. Kyiv, VITI NTUU “KPI”, 2010, P. 203.


GOST Style Citations


1. Kozera C. Military use of unmanned aerial vehicles a historical study / С. Kozera // Safety & Defense. – 2018. – Vol. 4 (1). – P. 17–21. DOI: 10.37105/sd.4.

2. Udeanu. Unmanned aerial vehicle in military operations / Udeanu, Gheorghe & Dobrescu, Alexandra & Oltean, Mihaela // Scientific research and education in the air force. – 2016. – Vol. 18. – P. 199–206. DOI: 10.19062/2247-3173.2016.18.1.26.

3. Ясечко М. Н. Современные радиотехнические средства борьбы с беспилотными летательными аппаратами в зоне проведения АТО / М. Н. Ясечко, А. В. Очкуренко, А. А. Ковальчук, Д. В. Максюта // Збірник наукових праць Харківського університету Повітряних Сил. – 2015. – № 3 (44). – С. 54–57.

4. Maklashov V. Method of unification of electronic warfare means / V. Maklashov, M. Piganov // Reliability & Quality of Complex Systems. – 2019. DOI: 10.21685/2307-42052019-3-3.

5. Єрохін В. Ф. Математична модель перехоплення одиничного стрибка сигналу передавача з ППРЧ / В. Ф. Єрохін, О. M. Рома, С. В. Василенко, Д. Є. Бездрабко // Вісник НТУУ «КПІ» Серія Радіотехніка, Радіоапаратобудування. – 2016. – Вип. 64. – С. 75–85. DOI: 10.20535/RADAP.2016.64.75-85.

6. Биленко А. П. Сравнение помехозащищенности радиолиний с широкополосными сигналами / А. П. Биленко, Л. Н. Волков // Радиотехника. – 1986. – № 4. – С. 19–21.

7. Міщенко В. Г. Методика оцінки завадозахищеності алгоритмів входження в синхронізм радіолінії з псевдовипадковим перелаштуванням радіочастоти / В. Г. Міщенко, В. Ф. Єрохін // Захист інформації. – 2001. – № 2. – C. 32–59.

8. Рома О. М. Вибір параметрів алгоритму входження в синхронізм радіолінії управління безпілотним літальним апаратом з псевдовипадковим переналаштуванням робочої частоти / О. М. Рома, С. В. Василенко // Збірник наукових праць Військового інституту Київського національного університету імені Тараса Шевченка. – 2016. – № 54. – C. 71–78.

9. Рома О. М. Основи побудови завадозахищеної радіолінії управління безпілотним літальним апаратом / О. М. Рома, С. В. Василенко // Збірник наукових праць Військового інституту Київського національного університету імені Тараса Шевченка. – 2015. – № 49. – C. 97–104.

10. Чуднов А. М. Об адаптивных алгоритмах псевдослучайного переключения рабочих частот радиолиний в условиях случайных и преднамеренных помех / А. М. Чуднов // Журнал радиоэлектроники. – 2015. – № 4.

11. Нагорнюк О. А. Метод автоматичного визначення часових параметрів радіосигналів із псевдовипадковим перестроюванням робочої частоти на фоні вузькосмугових перешкод / О. А. Нагорнюк // Збірник наукових праць ЖВІ. – 2018. – Вип. 15. – С. 53–64.

12. Fernández de Gorostiza A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications / Fernández de Gorostiza, J. Berzosa, J. Mabe, R. Cortiñas // Sensors. – 2018. – Vol. 18, Issue 2. – P. 657. DOI: https://doi.org/10.3390/s18020657.

13. Кривенко О. В. Методика формування сигналу в радіозасобах з ППРЧ в умовах впливу навмисних шумових завад / О. В. Кривенко // Системи озброєння і військова техніка. – 2017. – № 1. – С. 132–135.

14. Гурський Т. Г. Методика формування сигналу в радіозасобах з ППРЧ при передачі мови в умовах впливу завад у відповідь / Т. Г. Гурський, О. В. Кривенко // Системи управління, навігації та зв’язку. – 2017. – № 2. – С. 179–184.

15. Lei Z. Detection and Frequency Estimation of Frequency Hopping Spread Spectrum Signals Based on Channelized Modulated Wideband Converters / Lei Z., P. Yang, L. Zheng // Electronics. – 2018. – Vol. 7, Issue 9. – P. 70. DOI: https://doi.org/10.3390/electronics7090170.

16. Kanaa A. A robust parameter estimation of FHSS signals using time–frequency analysis in a non-cooperative environment / A. Kanaa, A. Sha’ameri // Physical Communication. – 2018. – Vol. 26. – P. 9–20. DOI: https://doi.org/10.1016/j.phycom.2017.10.013.

17. Березюк М. В. Завадозахищеність синхронізації радіолінії з ППРЧ та фіксованим набором частот входження / М. В. Березюк // Пріоритетні напрямки розвитку телекомунікаційних систем та мереж спеціального призначення : зб. матеріалів ІV наук.практ. семін. Київ : тези доповідей. – Київ : ВІТІ НТУУ “КПІ”, 2007. – С. 58.

18. Піскун С. Ж. Завадозахищеність типових алгоритмів входження в синхронізм ліній і систем зв’язку з псевдовипадковим перелаштуванням робочої частоти / Піскун С. Ж. // Пріоритетні напрямки розвитку телекомунікаційних систем та мереж спеціального призначення : зб. матеріалів V наук.-техн. конф. Київ : тези доповідей. – Київ: ВІТІ НТУУ “КПІ”, 2010. – С. 203.







Copyright (c) 2020 O. M. Roma, S. V. Vasylenko, Ye. V. Peleshok, S. V. Honenko, B. A. Nikolayenko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.