DOI: https://doi.org/10.15588/1607-3274-2020-2-17

REDUCED OBSERVER IN STABILIZING SYSTEM OF A ROCKET MOTION

V. V. Avdejev

Abstract


Context. The peculiarity of the rocket movement as an object of control in that in the course of flight its parameters, depending of the trajectory point and fuel consumption, change significantly. It belongs also to disturbance forces that can’t be directly measured by the system of sensor. Accordingly, requirements are set for the stabilization of movement, in particular, for the choice of the control law and power of actuator, which due to incomplete information about the disturbances is assigned based on estimates of their maximum values, which causes a reduction in the payload of the rocket. The need to observe the kinematic characteristics of the actuator in process of disturbances compensation is due to the necessity to determine the actual level of its loading in order to justify the design indicators and increasing requirements for the efficiency of algorithms for choosing of the control law. 

Objective. Development the structure chart of observer of the equivalent steering angle and its angular velocity which are directly not measured but are included in the state vector of the control object – the perturbed motion of the rocket in one of the stabilization planes.

Method. A linear model of the plane motion of a space rocket, stationary in the vicinity of a certain point of the trajectory, was adopted taking into account the inertia of the stabilizing system actuator in the form of six first order linear differential equations. Available for real-time measurement are four coordinates of the control object, these are deviation of the rocket center of mass from the program position, the rotation angle of the rocket body and their derivatives in time. By representing the matrix included in the model of the control object – the perturbed movement of the body in the yawing plane, in the form of blocks, differential equations of the reduced observing device of the kinematic parameters of the actuator are obtained, there are the equivalent steering angle and its angular velocity. On the basis of these equations two variants of the structure chart have been developed, which include an integrator and linear blocs of matrix multiplication.

Results. A structure chart of a reduced observing device for the angle of rotation of the steering gear of the actuator and its angular velocity during the compensation of disturbing forces for cases of use and non-use of these data in the control law is developed.

Conclusions. The obtained on the basis of the measure data current values of the kinematic characteristics of the actuator can be used to determine the level of its actual download and, if necessary, to form a control law that takes into account all the coordinates of the state vector of the adopted model. 


Keywords


Stabilization of motion, state vector, actuator, law of control.

References


Suhorebryj V. G., Cvetkova A. A., Shopina A. B. Optimizacija parametrov sistemy stabilizacii raket-nositelej s pomoshh’ju metoda variacij [Text] / V. G. Suhorebryj, // Otkrytye informacionnye i komp’juternye integrirovannye tehnologii, 2015, No. 68, pp. 5–12. Rezhim dostupu: http://nbuv.gov.ua/UJRN/vikt_2015_68_3

Thakur D., Srikant S., Akella M. Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters [Text], Journal of guidance, control, and dynamics, 2015, Vol. 38, Issue 1, pp. 41–52. DOI: 10.2514/1.G000457

Li M., Hou M., Yin C. Adaptive attitude stabilization control design for spacecraft under physical limitations [Text], Journal of guidance, control, and dynamics, 2016, Vol. 39, Issue 9, pp. 2179–2183. DOI: 10.2514/1.G000348

Senqiang Z., Danwei W., Qiang S. et. al. Satellite Attitude Stabilization Control with Actuator Faults [Text], Journal of guidance, control, and dynamics, 2017, Vol. 40, Issue 5, pp. 1304–1313. https://doi.org/10.2514/1.G001922

Avdeyev V. Stabilization of rocket motion [Text], Space technologies: present and future: 7th International Conference, Dnipro, 21–24 Mai 2019. : proceedings. Dnipro, Yuzhnoye state design office, 2019, P. 114.

Biryukov V. G., Chelnokov Yu. N. Kinematic problem of optimal nonlinear stabilization of the angular motion of a solid [Text], Izvestiya RAS, series: Solid Mechanics, 2017, No. 2, pp. 3–12.

Ovchinnikov M. Yu., Tkachev S. S., Shestopyorov A. I. Stabilization algorithms for a spacecraft with non-rigid elements [Text], Bulletin of the Russian Academy of Sciences. Theory and Control Systems, 2019, No. 3, pp. 147–163.

Asanov A. Z., Demyanov D. N. Analytical synthesis of lower-order functional observers [Text], Izvestia RAS. Theory and control systems, 2015, No. 4, pp. 505–513.

Mazenc F., Fridman Е. Predictor-based sampled-data exponential stabilization through continuous–discrete observers [Text], Automatica, 2016, Vol. 63, pp. 7481. DOI: 10.1016/j. automatica.2015. 10.016

Alessandri A., Zaccarian L. Stubborn state observers for linear time-invariant systems [Text], Automatica, 2018, Vol. 88, pp. 1–9. DOI: 10.1016/j. automatica.2017. 10.022

Efimov D., Edwards Ch., Zolghadri A. Enhancement of adaptive observer robustness applying sliding mode techniques [Text], Automatica, 2016, Vol. 72, pp. 53–56. https://doi.org/10.1016/j.automatica.2016.05.029

Astolfi D., Possieri C. Design of local observers for autonomous nonlinear systems not in observability canonical form [Text], Automatica, 2019, Vol. 103, pp. 443–449. DOI: 10.1016/j.automatica.2019. 02.030

Avdeyev V. V. Vplyv nepovnoi informatsii pro vektor stanu na kharakterystyky systemy stabilizatsii rakety [Text], Visnyk DNU: seriia RKT, 2017,Vol. 25, No. 4, Vyp. 20, pp. 3– 11.

Avdeyev V. V. Vykorystannia informatsii pro vektor stanu vykonavchoho prystroiu v systemi stabilizatsii obertalnoho rukhu rakety [Text], Radio Electronics, Computer Science, Control, 2018, № 3, pp. 174–182.


GOST Style Citations


1. Сухоребрый В. Г. Оптимизация параметров системы стабилизации ракет-носителей с помощью метода вариаций [Текст] / В. Г. Сухоребрый, А. А. Цветкова, А. Б. Шопина // Открытые  информационные и компьютерные интегрированные технологии. – 2015. – № 68. – С. 5–12. Режим доступу: http://nbuv.gov.ua/UJRN/vikt_2015_68_3

2. Thakur D. Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters [Text] / D. Thakur, S. Srikant, M. Akella // Journal of guidance, control, and dynamics. – 2015. – Vol. 38, Issue 1. – P. 41–52. DOI: 10.2514/1.G000457

3. Li M. Adaptive attitude stabilization control design for spacecraft under physical limitations [Text] / M. Li, M. Hou, C. Yin // Journal of guidance, control, and dynamics. – 2016. – Vol. 39, Issue 9. – P. 2179–2183.  DOI: 10.2514/1.G000348

4. Senqiang Z. Satellite Attitude Stabilization Control with Actuator Faults [Text] / [Z. Senqiang, W. Danwei, S. Qiang et. al.] // Journal of guidance, control, and dynamics. – 2017. – Vol. 40, Issue 5. – P. 1304–1313. https://doi.org/10.2514/1.G001922

5. Avdeyev V. Stabilization of rocket motion [Text] / V. Avdeyev // Space technologies: present and future: VII Міжнародна конференція, Дніпро, 21–24 травня 2019 р.: тези доповідей. – Дніпро : ДП КБ Південне, 2019. – С. 114.

6. Бирюков В. Г. Кинематическая задача оптимальной нелинейной стабилизации углового движения твердого тела [Текст] / В. Г. Бирюков, Ю. Н. Челноков // Известия РАН, серия: механика твердого тела. –  2017. –  № 2. – С. 3–12. 

7. Овчинников М. Ю. Алгоритмы стабилизации космического аппарата с нежесткими элементами [Текст] / М. Ю. Овчинников, С. С. Ткачев, А. И. Шестоперов // Известия РАН. Теория и системы управления. –  2019. – № 3. – С. 147–163. 

8. Асанов А. З. Аналитический синтез функциональных наблюдателей пониженного порядка [Текст] / А. З. Асанов, Д. Н. Демьянов // Известия РАН. Теория и системы управления. – 2015. – № 4. – С. 505–513.

9. Mazenc F. Predictor-based sampled-data exponential stabilization through continuous–discrete observers [Text] / F. Mazenc, Е. Fridman // Automatica. – 2016. – Vol. 63. – P. 74–81. DOI: 10.1016/j. automatica.2015. 10.016

10. Alessandri A. Stubborn state observers for linear timeinvariant systems [Text] / A. Alessandri, L. Zaccarian // Automatica. – 2018. – Vol. 88. – P. 1–9. DOI: 10.1016/j. automatica.2017. 10.022

11. Efimov D. Enhancement of adaptive observer robustness applying sliding mode techniques [Text] / D. Efimov, Ch. Edwards, A. Zolghadri // Automatica. – 2016. – Vol. 72. – P. 53–56. https://doi.org/10.1016/j.automatica.2016.05.029 

12. Astolfi D. Design of local observers for autonomous nonlinear systems not in observability canonical form [Text] / D. Astolfi, C. Possieri // Automatica. – 2019. – Vol. 103. – P. 443–449. DOI: 10.1016/j.automatica.2019. 02.030

13. Авдєєв В. В. Вплив неповної інформації про вектор стану на характеристики системи стабілізації ракети [Текст] / В. В. Авдєєв // Вісник ДНУ: серія РКТ. – 2017. – Т. 25, № 4, вип. 20. – С. 3–11.

14. Авдєєв В. В. Використання інформації про вектор стану виконавчого пристрою в системі стабілізації обертального руху ракети [Текст] / В. В. Авдєєв // Радіоелектроніка, інформатика, управління. – 2018. – № 3, С. 174–182.







Copyright (c) 2020 V. V. Avdejev

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.