DOI: https://doi.org/10.15588/1607-3274-2020-2-18

ANALYTICAL METHODS OF CALCULATION OF POWERED AND PASSIVE TRAJECTORY OF REACTIVE AND ROCKET-ASSISTED PROJECTILES

O. V. Majstrenko, V. V. Prokopenko, V. I. Makeev, E. G. Ivanyk

Abstract


Context. Within the framework of the accepted simplifying hypotheses, an approximate scheme of calculation of the parameters of the active and passive sections of the trajectory is proposed, which allow to study the trajectory properties of the existing as well as perspective samples of the reactive and rocket assisted projectiles. The object of the study is a model for the calculation of the trajectories of the reactive and rocket assisted projectiles based on a nonlinear system of differential equations of motion of the center of mass of the solid. 

Purpose. The purpose of the work is to propose for practical apply a new system of corrections in the range and direction for deviation of the flight conditions of the projectiles from the table value, based on the calculations of elements of the trajectory of the projectiles at the end of the active section of the trajectory, which greatly improves the accuracy of preparation of installations for firing and as a result - the effectiveness of hitting the target.

Objective. The goal of the work is to propose a new system of corrections in the range and direction for deviation of the flight conditions of the projectiles from the table value, based on the calculations of elements of the trajectory of the projectiles at the end of the active section of the trajectory, which greatly improves the accuracy of preparation of installations for firing and as a result - the effectiveness of hitting the target.

Method. The proposed analytical method allows to: determine the set of indicators characterizing the process of approaching the rocket projectile from the guide and clarify the initial conditions necessary to solve the system of equations of motion on the active section of the trajectory; which is regarded as a standalone trajectory that affects the course of the projectile's flight on the active section of the trajectory. The calculation of the passive trajectory plot for rocket projectile and the second passive plot for active rockets projectile is necessary to obtain the trajectory parameters at the point of fall (in the vicinity of the target) which is important for the correction of fire in the subsequent defeat of the target by reactive (active-reactive) projectile's (mortar shells).

Results. The developed calculation method was tested in the estimation of the accuracy of the calculation of the elements of the trajectory of projectile movement.

Conclusions. The calculations performed on the basis of the developed analytical method confirm the workability of the proposed mathematical support and allow recommending it for practical use in solving problems of external ballistics with the prospect of optimizing the trajectory of motion of controlled and unmanaged flying objects. Prospects for further research are to create consistent methods for calculating tactical and technical indicators of new types of ammunition.


Keywords


Mathematical modeling of the ballistic solid motion, the movement of the center of masses of solids, which modeling of reactive (active-reactive) shells and mines, engine thrust, fuel flow per second, rocket fuel weight, engine run time, powered and passive trajectory sector.

Full Text:

PDF

References


Dmitrievskij A. A., Lysenko L. N. External ballistics. Moscow, Engineering, 2005, 607 p.

Gantmakher F. R., Levin L. M. The flight of uncontrolled rockets. New York, Pergamum Press, 1964, 379 p.

Makyeyev V. I. Mathematical model spatial movement aircraft solid fuel in the atmosphere, Messenger Sumy State University, 2008, No. 2, pp. 5–12.

Abbas L. K., Rui X. Numerical investigations of aero elastic divergence parameter of unguided launch vehicles, Space Research Journal, 2011, Issue 4(1), pp. 1–11. DOI: 10.3923/srj.2011.1.11

Burlov V. V., Lysenko L. N. Ballistics receiver systems Moscow, Engineering, 2006, 459 p.

Morote J., Liaño G. Flight Dynamics of Unguided Rockets with Free-Rolling Wrap Around Tail Fins, Journal of Spacecraft and Rockets, 2006, Issue 43(6), pp. 1422–1423. DOI: 10.2514/1.22645

Sun H., Yu J., Zhang S. The control of asymmetric rolling missiles based on improved trajectory linearization control method, Journal of Aerospace Technology and Management, 2016, Vol. 8, No. 3, pp. 319–327. DOI: 10.5028/jactm.v813.617

Arutyunova N. K., Dulliev A. M., Zabotin V. I. Models and methods for three external ballistics inverse problems, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS), 2017, Vol. 10, No. 4, pp. 78–91. DOI: 10.14529/mmp170408

Sahu J. Unsteady computational fluid dynamics modeling of free-flight projectile aerodynamics, WITTransactions on Modelling and Simulation, 2007, Vol. 45, pp. 3–12. DOI: 10.2495/CBAL070011

Kokes J., Costello M., Sahu J. Generating an aerodynamic model for projectile flight simulation using unsteady time accurate computational fluid dynamic results, WIT Transactions on Modelling and Simulation, 2007, Vol. 45, pp. 31– 54. DOI: 10.2495/CBAL070041

McCoy R. L. Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric Projectiles. Atglen, PA, Schiffer Publishing Ltd., 2012, 328 p.

Makeev V. I. Grabchak V. I., Trofimenko P. E., Pushkarev Y. I. Research of jet engine operation parameters on the range and accuracy of firing of rockets, Information processing system, 2008, Vol. 6(73), pp. 77–81.

Grabchak V. I., Makeev V. I., Trofimenko P. E., Pushkarev Yu. I Substantiation of a rational correction system for firing with active rockets (mines), Artillery and small arms, 2009. No. 4, pp. 3–9.

Celis R. D., Cadarso L., Sánchez J. Guidance and control for high dynamic rotating artillery rockets, Aerospace Science and Technology, 2017, Vol. 64, pp. 204212. DOI:10.1016/j.ast. 2017.01.026

Gkritzapis D. N., Kaimakamis G., Siassiakos K., Chalikias M. A review of flight dynamics simulation model of missiles, 2nd European Computing Conference (ECC’08). Malta, September 11–13, 2008, pp. 257–261.

Lahti J., Sailaranta T., Harju M., Virtanen K. Control of exterior ballistic properties of spin-stabilized bullet by optimizing internal mass distribution, Defense Technology.  2019, Vol. 15, pp. 3850. DOI: 10.1016/j.dt.2018.10.003Received 00.00.2020.


GOST Style Citations


1. Дмитриевский А. А. Внешняя баллистика / А. А. Дмитриевский, Л. Н. Лысенко. – М. : Машиностроение, 2005. – 607 с.

2. The flight of uncontrolled rockets / F. R. Gantmakher, L. M. Levin. – New York : Pergamum Press, 1964. – 379 p.

3. Макєєв В. І. Математична модель просторового руху літального апарату на твердому паливі в атмосфері / В. І. Макєєв // Вісник Сумського Державного університету. – 2008. – № 2. – С. 5–12.

4. Abbas L. K. Numerical investigations of aero elastic divergence parameter of unguided launch vehicles / L. K. Abbas, X. Rui // Space Research Journal. – 2011. – Issue 4(1). – P. 1–11. DOI: 10.3923/srj.2011.1.11

5. Бурлов В. В. Баллистика ствольных систем / В. В. Бурлов, Л. Н. Лысенко. – М. : Машиностроение, 2006. – 459 с.

6. Morote J. Flight Dynamics of Unguided Rockets with FreeRolling Wrap Around Tail Fins / J. Morote, G. Liaño // Journal of Spacecraft and Rockets. – 2006. – Issue 43(6). – P. 1422–1423. DOI: 10.2514/1.22645

7. Sun H. The control of asymmetric rolling missiles based on improved trajectory linearization control method / H. Sun, J. Yu, S. Zhang // Journal of Aerospace Technology and Management. – 2016. – Vol. 8, N 3. – P. 319–327. DOI: 10.5028/jactm.v813.617

8. Arutyunova N. K. Models and methods for three external ballistics inverse problems / N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin // Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS). – 2017. – Vol. 10, No. 4. – P. 78–91. DOI: 10.14529/mmp170408

9. Sahu J. Unsteady computational fluid dynamics modeling of free-flight projectile aerodynamics / J. Sahu // WIT Transactions on Modelling and Simulation.  2007.  Vol. 45.  P. 3–12. DOI: 10.2495/CBAL070011

10. Kokes J. Generating an aerodynamic model for projectile flight simulation using unsteady time accurate computational fluid dynamic results / J. Kokes, M. Costello, J. Sahu // WIT Transactions on Modelling and Simulation.  2007.  Vol. 45.  P. 31–54. DOI: 10.2495/CBAL070041

11. McCoy R. L. Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric Projectiles / R. L. McCoy.  Atglen, PA: Schiffer Publishing Ltd., 2012.  328 p.

12. Исследование влияния параметров работы реактивного двигателя на дальность и кучность стрельбы реактивных снарядов / [В. И. Макеев, В. И. Грабчак, П. Е. Трофименко, Ю. И. Пушкарев] // Системы обработки информации. – 2008. – Выпуск 6(73). – С. 77–81.

13. Обоснование рациональной системы поправок при стрельбе активно-реактивными снарядами (минами) / [Грабчак В. И., Макеев В. И., Трофименко П. Е., Пушкарев Ю. И.] // Артиллерийское и стрелковое вооружение. – 2009. – № 4. – С. 3–9.

14. Celis R. D. Guidance and control for high dynamic rotating artillery rockets / R. D Celis, L. Cadarso, J. Sánchez // Aerospace Science and Technology.  2017.  Vol. 64.  P. 204212. DOI:10.1016/j.ast. 2017.01.026

15. A review of flight dynamics simulation model of missiles / D. N. Gkritzapis, G. Kaimakamis, K. Siassiakos, M. Chalikias // 2nd European Computing Conference (ECC’08), Malta, September 11–13, 2008. P. 257–261.

16. Lahti J. Control of exterior ballistic properties of spinstabilized bullet by optimizing internal mass distribution / J. Lahti, T. Sailaranta, M. Harju, K. Virtanen // Defence Technology.  2019.  Vol. 15.  P. 38 50. DOI: 10.1016/j.dt.2018.10.003







Copyright (c) 2020 O. V. Majstrenko, V. V. Prokopenko, V. I. Makeev, E. G. Ivanyk

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.