BLIND DIGITAL SIGNATURE PROTOCOL ON ELLIPTIC CURVES OVER VECTOR FINITE FIELD

Authors

  • H. I. Nikulishchev Zaporizhzhia national technical university, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2013-2-12

Keywords:

blind digital signature, vector finite field, elliptic curve.

Abstract

Digital signature schemes can fulfill an actual task of ensuring fairness and transparency of electronic election. However, existing standards and protocols need modification into blind signature and additional security check by the anonymity criterion. The author examines blind signature protocol provided by Russian scientists. It is proposed to improve scheme‘s efficiency by changing inner mathematics. Elliptic curves over vector finite field enable parallel processing in group operation and reduce integer range. These advantages are illustrated by computational example. Also, improved protocol investigation by the anonymity criterion is provided in the article. The author proves that mathematics change do not affect protocol security.

References

Moldovyan N. A. Teoreticheskij minimum i algoritmy’ cifrovoj podpisi. Sankt-Peterburg, BXV-Peterburg, 2010, 304 p.

Bolotov A. A., Gashkov S. B., Frolov A. B., Chasovskix A. A. Algoritmicheskie osnovy’ e’llipticheskoj kriptografii. Moscow, Me’i, 2000, 100 p.

Kostin A. A., Moldovyan N. A., Fal’ A. M. O realizacii protokolov slepoj podpisi i kollektivnoj podpisi na osnove standartov cifrovoj podpisi. Materialy’ VI Sankt-Peterburgskoj mezhregional’noj konferencii «Informacionnaya bezopasnost’ Rossii (IBRR-2009)». Sankt-Peterburg, 28–30 oktyabrya 2009, Sankt-Petersburg, SPOISU, 2009, pp. 111.

Nikulishchev H. I., Kozina H. L. Anonimnist yak kryterii otsinky akhyshchenosti protokoliv slipoho elektronnoho tsyfrovoho pidpysu. Pravove, normatyvne ta metrolohichne zabezpechennia systemy zakhystu informatsii v Ukraini, 2012, No. 2, pp. 52–59.

Published

2013-09-19

How to Cite

Nikulishchev, H. I. (2013). BLIND DIGITAL SIGNATURE PROTOCOL ON ELLIPTIC CURVES OVER VECTOR FINITE FIELD. Radio Electronics, Computer Science, Control, (2). https://doi.org/10.15588/1607-3274-2013-2-12

Issue

Section

Mathematical and computer modelling