MODELS FOR CALCULATING WEIGHTS FOR ESTIMATION INNOVATIVE TECHNICAL OBJECTS

Authors

  • E. A. Titenko South-Western state University, Kursk, Russian Federation
  • N. S. Frolov South-Western state University, Kursk, Russian Federation
  • A. L. Khanis South-Western state University, Kursk, Russian Federation
  • O. G. Dobroserdov South-Western state University, Kursk, Russian Federation
  • A. I. Zakharenkov Voentelecom JSC, Moscow, Russian Federation
  • A. N. Popov V. V. Tarasov Aviaavtomatika JSC, Kursk, Russian Federation
  • T. A. Dronova Kursk State Medical University of the Ministry of health of the Russian Federation, Kursk, Russian Federation

DOI:

https://doi.org/10.15588/1607-3274-2020-3-17

Keywords:

Іnnovative high-tech object, a model for weight correction, an extended summary table, a vector of correction coefficients, and a method for analyzing hierarchies.

Abstract

Relevance. The relevance of the work is associated with a multi-criteria comparison of innovative objects, which are understood as objects with partially identical individual indicators that have uncertain, subjective values and criteria for their evaluation. Compared innovation objects are described by General and individual indicators, and the number of individual indicators is significant (more than 50%). The hierarchy analysis method is the most suitable mathematical tool for comparing innovative objects, since it combines visual description of the subject area, numerical performance, and natural accounting for the variability of the initial pair estimates. However, this method does not take into account the individual indicators of innovative objects when compiling matrices of paired comparisons, which does not allow you to get the final weights corresponding to the individual characteristics of innovative objects.

Object. Development of a modified hierarchy analysis method that provides ranking of innovative objects with partially identical individual indicators.

Method. In this work, a modified method of analysis of hierarchies, comprising a typical sequence of stages from building a hierarchy of the subject area and the establishment of criteria for evaluation of innovative objects to the stage computing the final weights of innovative objects, a first introduction on the stage of building a hierarchy of the weights matrix shared and individual performance in the system of objects, and secondly by calculating correction factors based on local or global models of correction of weights of parameters of systems of objects at the stage of preparation of the consolidated table of weights, thirdly the computation of the final weights of innovative features based on a correction factor that took into account individual features compare innovative.

Results. The paper considers innovative objects with General and individual indicators in the ratio of 1:2 with the number of comparison criteria equal to 5, which corresponds to the class of objects of average organizational complexity. The objects being compared contain a typical object (the number of individual indicators is significantly less than 50%), a clearly innovative object (the number of individual indicators is more than 50%), and an object in the border zone (the number of individual indicators is about 50%). The classical method is not sensitive to the individual characteristics of innovative objects, which determined the minimum weight for a clearly innovative object. The modified method, on the contrary, determined the minimum weight for the object in the border zone, since it has both reduced values in the matrix of paired comparisons by criteria and low values of individual indicators.

Conclusions. The developed modified method of hierarchy analysis and correction models in its composition objectively reflect the order of ranking of objects, taking into account their description in the form of a matrix of General and individual indicators. According to the modeling, the share of individual indicators in their total number of more than 55% should be considered valuable for decision-making practice. In this case, it is preferable to evaluate objects based on a modified hierarchy analysis method. The vector of correction coefficients obtained on the basis of the weight correction model has an independent value in solving various computational and analytical problems and applied decision-making problems.

Author Biographies

E. A. Titenko, South-Western state University, Kursk

PhD, Associate Professor, Leading Researcher of the Center for Advanced Research and development

N. S. Frolov, South-Western state University, Kursk

PhD, Leading Researcher at the Center for Advanced Research and Development

A. L. Khanis, South-Western state University, Kursk

PhD, Associate Professor of the Department of Information security

O. G. Dobroserdov, South-Western state University, Kursk

Dr. Sc., Senior Researcher, Adviser to the rector

A. I. Zakharenkov, Voentelecom JSC, Moscow

Dr. Sc., Professor, first Deputy General Director

A. N. Popov, V. V. Tarasov Aviaavtomatika JSC, Kursk

General Director

T. A. Dronova, Kursk State Medical University of the Ministry of health of the Russian Federation, Kursk

Dr. Sc., Professor of Propaedeutics of Internal Diseases

References

Judin D. B. Matematicheskie metody upravlenija v uslovijah nepolnoj informacii. Moscow, URSS, 2010, 400 p.

Zak Ju. A. Prinjatie mnogokriterial’nyh reshnij. Moscow, Jekonomika, 2011, 235 p.

Kuk Ju. V., Lavrikova E. I. Spektral’nyj metod raspoznavanija sostojanij dinamicheskih sistem, Komp’juternі zasobi, merezhі ta sistemi, 2007, No. 6, pp. 133–140.

Saaty T. L. Decision making with the Analytic Hierarchy Process, International Journal of Services Sciences, 2008, Vol. 1, No. 1, pp. 83–98.

Dubrovin V. I., Mironova N. A. Metod poluchenija vektora prioritetov iz nechetkih matric parnyh sravnenij, Iskusstvennyj intellekt, 2009, No. 3, pp. 464–470.

Shheglov S. N. Analiz modelej prinjatija reshenij v novyh informacionnyh tehnologijah v uslovijah nechЀtkosti i neopredelЀnnost, Izvestija JuFU. Tehnicheskie nauk, 2012. Vol. 132, No. 7, pp. 126–131.

Groselj P., Zadnik Stirn L. Evaluation of several approaches for deriving weights in fuzzy group analytic hierarchy process, Journal of Decision Systems, 2018, Vol. 27, pp. 217–226.

Sieni E., Forzan M., Barba P. Di Migration NSGA : Method to Improve a Non-Elitist Searching of Pareto front with Application in Magnetics, Inverse Problems in Science and Engineering, 2016, Vol. 24, No. 1, pp. 543–566.

Wu S., Liu X., Li Z., Zhou Y. A consistency improving method in the analytic hierarchy process based on directed circuit analysis, Journal of Systems Engineering and Electronics, 2019, Vol. 30, No. 6, pp. 1160–1181.

Podinovskij V. V., Nogin V. D. Pareto-optimal’nye reshenija mnogokriterial’nyh zadach. Moscow, FIZMATLIT, 2007, 256 p.

Mashurov A. Ju., Vinokurov A. F., Levochko A. I. Metod analiza ierarhij dlja opredelenija luchshej al’ternativy, Molodoj uchenyj, 2019, No. 17, pp. 34–38.

Watkins D. S. Fundamentals of Matrix Computations, Wiley-Interscience, 2002, P. 633.

Saati T. L. Prinjatie reshenij. Metod analiza ierarhij. Moscow, Radio i svjaz’, 1993, 320 p.

Saati T. L. Prinjatie reshenij pri zavisimostjah i obratnyh svjazjah : analiticheskie seti. Moscow, Knizhnyj dom «LIBROKOM», 2009, 360 p.

Patari E., Karell V., Luukkaa P. et al Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence, European Journal of Operational Research, 2018, pp. 655–672.

Mironova N. A. Integracija modifikacij metoda analiza ierarhii dlja sistem podderzhki prinjatija gruppovyh reshenij, Radio Electronics, Computer Science, Control, 2011, No. 2, pp. 47–57.

Mironova N. A., Skripnik A. A. Arhitektura gruppovoj sistemy podderzhki prinjatija reshenij s vozmozhnost’ju sinteza metoda prinjatija gruppovyh reshenij, Sistemi obrobki іnformacії, 2012, Vol. 8, P. 33.

Cherkashin A. K. Matematicheskie aspekty realizacii metoda analiza ierarhij, Informacionnye i matematicheskie tehnologii v nauke i upravlenii, 2020, No. 1 (17), pp. 5–24.

Podinovskij V. V., Podinovskaja O. V. O nekorrektnosti metoda analiza ierarhij, Problemy upravlenija, 2011, No. 1, pp. 8–13.

Mironova N. A. Jekspertnaja sistema vybora modifikacii metoda analiza ierarhij, Avtomatizirovannye sistemy upravlenija i pribory avtomatiki, 2011, pp. 62–70.

Mousavia S. J., Ponnambalamb K., Karray F. Inferring operating rules for reservoir operations using fuzzy regression and ANFIS, Fuzzy Sets and Systems, 2007, Vol. 158, pp. 1064–1082.

Tutygin A. G., Korobov V. B. Preimushhestva i nedostatki metoda analiza ierarhij, Izvestija Rossijskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gercena. Estestvennye i tochnye nauki, 2010, No. 122, pp. 108–115.

Pshihopov V. H., Medvedev M. Ju. Ocenivanie i upravlenie v slozhnyh dinamicheskih sistemah. Moscow, Fizmatlit, 2009, 294 p.

Zagoruiko N. G., Borisova I. A., Dyubanov V. V. et al Methods of Recognition Based on the Function of Rival Similarity, Pattern Recognition and Image Analysis, 2008, Vol. 18, No. 1, pp. 1–6.

Teterin D. P. Sintez trebovanij k bortovomu informacionno-izmeritel’nomu i modelirujushhemu kompleksu, Informacionno- upravljajushhie sistemy, 2009, No. 1, pp. 10–14.

Titenko E. A., Dobroserdov O. G., Lisicin L. A. et al. Lokal’naja matematicheskaja model’ podgotovki dannyh dlja sravnenija innovacionnyh ob#ektov, Innovacii, 2019, No. 12, pp. 74–81.

Anfilatov V. S. Emel’janov A. A., Kukushkin A. A. Sistemnyj analiz v upravlenii: uchebnoe posobie. Moscow, Finansy i statistika, 2002, 368 p.

Ostroukh A.V., Elhadi H. Comparative study of routing protocols in vehicular ad-hoc networks (vanets), International Journal of Advanced Studies (iJAS), 2014, Vol. 4, No. 2, pp. 9–14.

Trahtengerc Je. A. Komp’juternye sistemy i metody podderzhki informacionnogo upravlenija. Moscow, SINTEG, 2010, 135 p.

Titenko E. A., Mirtalibov T. A. Modificirovannaja produkcionnaja sistema i specializirovannoe produkcionnoe ustrojstvo dlja podderzhki reshenija problemnopoiskovyh zadach, Visnik DUIKT, 2013, No. 3, pp. 13– 19.

Titenko E. A., Varganov V. V., Frolov S. N. i dr. Matematicheskie modeli korrekcii vesov innovacionnyh ob’ektov, Robototehnika i iskusstvennyj intellekt : XI Vserossijskaja nauchno-tehnicheskaja konferencija s mezhdunarodnym uchastiem: tezisy dokladov. Zheleznogorsk, Sibirskij federal’nyj universitet, 2019, pp. 154–160.

Ostrouh A. V., Surkova N. E. Intellektual’nye informacionnye sistemy i tehnologii: Monografija. Krasnojarsk, Nauchno-innovacionnyj centr, 2015, 370 p.

Andronov V. G., Emelyanov S. G. Autonomous navigation and attitude control of spacecrafts on near-earth circular orbits, Journal of Applied Engineering Science, 2018, Vol. 16, No. 1, pp. 107–110.

Mirtalibov T. A., Frolov S. N., Hanis A. L. i dr. Mnogoagentnye sistemy v tehnicheskoj diagnostike slozhnyh tehnicheskih ob’ektov, Izvestija Jugo-Zapadnogo universiteta, 2015, No. 3, pp. 18–25.

How to Cite

Titenko, E. A., Frolov, N. S., Khanis, A. L., Dobroserdov, O. G., Zakharenkov, A. I., Popov, A. N., & Dronova, T. A. (2020). MODELS FOR CALCULATING WEIGHTS FOR ESTIMATION INNOVATIVE TECHNICAL OBJECTS. Radio Electronics, Computer Science, Control, (3), 181–193. https://doi.org/10.15588/1607-3274-2020-3-17

Issue

Section

Progressive information technologies