DOI: https://doi.org/10.15588/1607-3274-2020-4-3

TELEMETRICAL INFORMATION EVALUATION ABOUT GEOPHYSICAL PROCESSES AT CONDITIONS OF NOISE

V. V. Kupriyanov

Abstract


Context. The problem of minimizing information losses during discrete measurement of methane content during the extraction of coal in coal mines is considered. 

Objective. The object of the study was the methodology for assessing the loss of telemetric information about geophysical processes in mines under noise conditions. The purpose of the work is to create a set of discrete and block schemes for obtaining information to assess its losses in the presence of distortions based on an information approach.

Method. The results of a study of the methodology for solving the problem of minimizing information loss when measuring methane content in coal mines are presented. A measure of distortions arising from the discrete display of the set of states of the geophysical process in the measurement space under noise and error conditions in the elements of the automated methane control subsystem is proposed. Along with this measure, a model is also proposed for determining the lower boundary of the expected information for given distortions, based on the solution of the optimization problem. The characteristics of some discrete and block schemes for obtaining information are investigated. The proposed block schemes take into account the grouping of transition probability values in three, five, seven, ten, and fifteen-dimensional versions. By varying the size of the grouping in blocks, the technique allows one to obtain various levels of detail of the boundaries of the expected information.

Results. The developed schemes were implemented in software and investigated to solve the problem of minimizing information loss while monitoring methane contents in coal mines.

Conclusions. The experiments carried out confirmed the operability of the proposed software and allow us to recommend it for use in practice when constructing n-dimensional schemes for obtaining information. Prospects for further research may lie in an experimental study of the proposed schemes on a larger set of practical tasks of a different nature, as well as in the creation of promising measuring systems based on the principles of information analysis. 


Keywords


Discrete scheme for obtaining information, distortion, transition probability, information loss, noise.

Full Text:

PDF

References


Kavalerov G. I., Mandel’shtam S. M. Introduction to the Information Theory of Measurement. Moscow, énergiya, 1974, 376 p.

Shannon C. Information theory and cybernetics. In the Soviet Union, 1950.

Goldman S. Information Theory. Dover Pubs, 1968, 446 p.

Kolmagorov A. N., Tikhomov V. M. Entropy From Time Series Using Information-Theoretic Functionals. Milan palus, 1996, Vol. 2, No. 14, pp. 66–99.

Petrov B. N., Ulanov G. M., Petrov V. V., Ageyev V. M., Zaporozhets A. V., Uskov A. S., Kotchubievsky I. D., The Information Bases of the Theory of Feedback Control Systems. The Moscow Aviation Institute, 1972, Vol. 4, pp. 3– 57.

Tarasenko F.P. Introduction to a Course on Information Theory. Tomsk, Tomsk University, 1963, 240 p.

Hiller F. S., Lieberman G. J. Introduction to stochastic models in operations research. New York, McGraw-Hill, 2010, 448 p. DOI: 10.1003/9781480612448.

Lutsenko E.V. Matematicheskaya syshnost sistemnoyi teorii information, Kuban State Agrarian University named after I. T. Trubilina. Krasnodar, eISSN: 1990–4665

Bates, J.A.V. Significance of Information Theory to Neurophysiology, IRE Transactions on Information Theory, 1953, pp. 137–142

Wolfowitz J. Coding Theorems of Information Theory. Springer-Verlag, New York, 1978, 2rd

Kupriyanov V. V., Barannikova I. V. Metodologicheskie aspekty dispetcherskogo kontrolia gazovozdyshykh situatsij na uchastkakh Shakhty, Gornyi informatsionnoanaliticheskij Byulleten, 2016, No. 9, pp. 46–58.

Kuprianov V. V., Matskevich O., Bondarenko I. S. Parametricheskie i neparametricheskie modeli prognozirovania neshtatnykh situatsii v padzemnykh gornykh vyrabotnykh, Gornyi informatsionno-analyticheskiy byulleten, 2018, No. 3, pp. 200–207. DOI:10.25018/0236-1493-2018-3-0200-207.

Kupriyanov V. V., Gerasimov V.S. The ways of increase of reliability of the processing and transmission of information in automated control systems, Cornell University Library. USA, Itaka, state New York. Achives.org: cluster Information Theory, 2017, pp. 114–117. DOI:10.1145/1273496.2017 117.

Kupriyanov V.V. Vybor inervalov oprosa apparatury kontrolia metana v ugol’nykh shakhatakh, Informatsionnye Tekhnologii. Problemy i Resheniia. Sed’maia Mezhdynarodnaia konferentsiia. Ufa, 21–24 Majia, trudy Ufa, Ufimskiy gosudarstvenniy tekhnicheskiy universitet, 2019, pp. 33–37.

Van der Zijpp N. J., Bovy H. L. Driver information acquisition behavior. A modeling approach, Automotive Technology and Automation:27th International Symposium ISATA, Aachen, Germany, 31st October-4th November,1994, proceedings. Croydon, Automotive Automation Society, England, 1994, pp. 113–120. ISBN 0947719652.

Shannon C. Weaver Warren The Mathematical Theory of Communication. University of Illinois Press, 1963, ISBN 0252-72548-4

Kullback S. Information Theory and Statistics. Dover Publications; New edition edition, July 7, 1997, 423 p.

Chaitin G. J. Information theoretical limitations of formal systems, J.Assoc. Comp, 1974, 21, pp. 403–424.

Bellman R. Dynamic Programming. Dover Publications; Reprint edition, 2003, 384 p.

Himmelblau D. Process analysis by statistical methods. Wiley, 1970, 463 p.


GOST Style Citations


1. Kavalerov G.I. Introduction to the Information Theory of Measurement / G. I. Kavalerov, S. M. Mandelshtam. – Moscow : énergiya, 1974. – 376 p.

2. Shannon C. Information theory and cybernetics / C. Shannon. – in the Soviet Union, 1950.

3. Goldman S. Information Theory / S. Goldman. – Dover Pubs., 1968. – 446 p.

4. Kolmagorov A.N. Entropy From Time Series Using Information-Theoretic Functionals / A. N. Kolmagorov, V. M. Tikhomov // Milan palus. – 1996 – Vol. 2, № 14. – P. 66–99.

5. Petrov B.N. The Information Bases of the Theory of Feedback Control Systems / [B. N. Petrov, G. M. Ulanov, V. V. Petrov et all] // The Moscow Aviation Institute. – 1972. – Vol. 4. – P. 3-57.

6. Tarasenko F. P. Introduction to a Course on Information Theory / F. P. Tarasenko. – Tomsk : Tomsk University, 1963. –240 p.

7. Hiller F. S. Introduction to stochastic models in operations research /F. S. Hiller, G. J. Lieberman. – New York : McGraw-Hill, 2010. – 448 p. DOI: 10.1003/9781480612448.

8. Lutsenko E. V. Matematicheskaya syshnost sistemnoyi teorii information // Kuban State Agrarian University named after I. T. Trubilina. – Krasnodar – eISSN: 1990-4665

9. Bates J. A. V. Significance of Information Theory to Neurophysiology // IRE Transactions on Information Theory. – 1953. – P. 137–142.

10. Wolfowitz J. Coding Theorems of Information Theory / J. Wolfowitz. – Springer-Verlag, New York, 1978. – 2rd

11. Kupriyanov V.V. Metodologicheskie aspekty dispetcherskogo kontrolia gazovozdyshykh situatsij na uchastkakh Shakhty /V. V. Kupriyanov, I. V. Barannikova // Gornyi informatsionno-analiticheskij Byulleten. – 2016. – №9. – P. 46–58.

12. Kuprianov V. V. Parametricheskie I neparametricheskie modeli prognozirovania neshtatnykh situatsii v padzemnykh gornykh vyrabotnykh / V. V. Kupriyanov, O. Matskevich, I. S. Bondarenko // Gornyi informatsionno-analyticheskiy byulleten. – 2018. – № 3. – P. 200–207. DOI:10.25018/0236-1493-2018-3-0-200-207.

13. Kupriyanov V. V. The ways of increase of reliability of the processing and transmission of information in automated control systems / V. V. Kupriyanov, V. S. Gerasimov // Cornell University Library. USA, Itaka, state New York. Achives.org: cluster Information Theory. – 2017. – P. 114– 117. DOI:10.1145/1273496.2017 117.

14. Kupriyanov V. V. Vybor inervalov oprosa apparatury kontrolia metana v ugol’nykh shakhatakh / V. V. Kupriyanov // Informatsionnye Tekhnologii. Problemy i Resheniia. Sed’maia Mezhdynarodnaia konferentsiia, Ufa, 21–24 Majia: trudy Ufa: Ufimskiy gosudarstvenniy tekhnicheskiy universitet, 2019. – P. 33–37.

15. Van der Zijpp N. J. Driver information acquisition behavior. A modeling approach / N. J. Van der Zijpp, H. L. Bovy // Automotive Technology and Automation:27th International Symposium ISATA, Aachen, Germany, 31st October-4th November,1994:proceedings. – Croydon : Automotive Automation Society, England. – 1994. – P. 113–120. ISBN 0947719652.

16. Shannon C. The Mathematical Theory of Communication / C. Shannon, Weaver Warren. – Univesity of Illinois Press, 1963. –  ISBN 0-252-72548-4

17. Kullback S. Information Theory and Statistics / S. Kullback. – Dover Publications; New edition edition. – July 7, 1997. – 423 p.

18. Chaitin G. J. Information theoretical limitations of formal systems / G. J.  Chaitin // J. Assoc. Comp. – 1974. – 21. – P. 403–424.

19. Bellman R. Dynamic Programming / R. Bellman. – Dover Publications; Reprint edition, 2003. – 384 p.

20. Himmelblau D. Process analysis by statistical methods /D. Himmelblau. – Wiley, 1970. – 463 p. 







Copyright (c) 2020 V. V. Kupriyanov

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.