THE EVOLVING ADAPTIVE NEURAL NETWORK FOR DATA PROCESSING WITH MISSING OBSERVATIONS

Authors

  • A. Shafronenko Kharkiv National University of Radio Electronics, Ukraine, Ukraine
  • I. Pliss Kharkiv National University of Radio Electronics, Ukraine, Ukraine
  • Ye. Bodyanskiy Kharkiv National University of Radio Electronics, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2013-2-19

Keywords:

neural network, orthogonal polynomials, Chebyshev polynomials, incomplete data with missing observations

Abstract

The problem of computational intelligence systems synthesis in on-line mode, capable for processing stochastic signals with missing observations in the data is considered. An adaptive approach based on using of orthogonal polynomials is developed.

References

Jang, J.-S. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence / J.-S. Jang, C.-T. Sun, E. Mizutani. – Upper Saddle River : Prentice Hall, 1997. – 640 p.

Haykin, S. Neural Networks. A Comprehensive Foundation / S. Haykin. – Upper Saddle River : Prentice Hall, 1999. – 842 p.

Nelles, O. Nonlinear System Identification / O. Nelles. – Berlin : Springer, 2001. – 585 p.

Rutkowska, D. Neuro-Fuzzy Architectures and Hybrid Learning / D. Rutkowska. – Berlin : Springer, 2002. – 288 p.

Rutkowski, L. Computational Intelligence. Methods and Techniques / L. Rutkowski. – Berlin-Heidelberg : Springer-Verlag, 2008. – 514 p.

Kasabov, N. Evolving Connectionist Systems / N. Kasabov. – London : Springer-Verlag, 2003. – 307 p.

Lughofer, E. Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications / E. Lughofer. – Berlin-Heidelberg : Springer-Verlag, 2011. – 454 p.

Published

2013-10-16

How to Cite

Shafronenko, A., Pliss, I., & Bodyanskiy, Y. (2013). THE EVOLVING ADAPTIVE NEURAL NETWORK FOR DATA PROCESSING WITH MISSING OBSERVATIONS. Radio Electronics, Computer Science, Control, (2). https://doi.org/10.15588/1607-3274-2013-2-19

Issue

Section

Neuroinformatics and intelligent systems