DOI: https://doi.org/10.15588/1607-3274-2020-4-5

FAST RATIONAL INTERPOLATION OF TRANSFER FUNCTIONS OF LINEAR DYNAMIC SYSTEMS WITH DISTRIBUTED PARAMETERS

V. A. Kodnyanko

Abstract


Contex. Fast method of rational interpolation of the transfer function of linear dynamical systems with distributed parameters is described, the values of which can be found by numerical methods or by calculating the transcendental functions of the Laplace integral transform variable. The method makes it possible to determine explicitly the transfer function and, in particular, the characteristic equation of such a degree, which is sufficient to meet the accuracy requirements when calculating the root quality criteria for the dynamics of automatic control systems.

Objective. According to the proposed method, rational interpolation is reduced to solving a system of linear equations, the order of which is much lower (more than twice) the order of similar systems used for rational interpolation of functions by known methods. The properties of this system are such that its solution can be obtained by special fast methods of the quadratic order of complexity.

Method. An iterative algorithm for calculating the transfer function coefficients of a linear dynamic system with distributed parameters is carried out using the methods of complex variable functions theory using the discrete Laplace transform. The proposed approach made it possible to significantly speed up the calculations by decomposing the system of linear equations with respect to the coefficients of the transfer function to a system of approximately half the order, which allows a quick solution by the methods of Trench, Berlekamp-Massey, or Euclid.

Results. An example of the practical use of an iterative algorithm for rational interpolation and calculation with a given accuracy of the root quality criteria for the dynamics of a support with gas lubrication is considered.

Conclusions. The method allows to define explicitly the characteristic equation of such a degree, which is sufficient to meet the accuracy requirements when calculating the root quality criteria for the dynamics of automatic control systems. Rational interpolation is reduced to solving a system of linear equations, the order of which is much lower (more than twice) the order of similar systems used for rational interpolation of functions by known methods. The properties of the system are such that its solution can be obtained by special fast methods of the quadratic order of complexity. 


Keywords


Rational interpolation, linear dynamic system, transmission function, distributed parameter system, discrete Fourier transform.

Full Text:

PDF

References


Fraleigh J. B., Beauregard R. A. Linear Algebra. AddisonWesley, 1995, 608 p.

Riley K. F., Hobson M. P., Bence S. J. Mathematical methods for physics and engineering. Cambridge University Press, 2010, 455 p.

Middlebrook R. D. Input filter considerations in design and application of switching regulators, IEEE Industry Applications Society Annual Meeting, 1976, pp. 366–382.

Carrol J. An input impedance stability criterion allowing more flexibility for multiple loads which are independently designed, Naval Air Warfare Center, Aircraft Division, Indianapolis, B/812, 1992.

Wildrick C. M., Lee F. C., Cho B. H., Choi B. A method of defining the load impedance specification for a stable distributed power system, IEEE Transactions on Power Electronics, 1995, pp. 280–285.

Kodnyanko V. A. Stability of energy-saving adaptive radial hydrostatic bearing with limitation of the output flow of lubricant, Journal of the Siberian Federal University. Technics and technology, Krasnoyarsk, 2011, Vol. 6, No. 4, pp. 907–914.

Bradie B.A. Friendly Introduction to Numerical Analysis, Upper Saddle River, New Jersey: Pearson Prentice Hall, 2006.

Smith S.W. Chapter 8: The Discrete Fourier Transform, The Scientist and Engineer's Guide to Digital Signal Processing, San Diego, Calif.: California Technical Publishing, 1999.

Golub G. H., Van Loan C. F. Matrix computations, John Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

Heinig G., Rost K., Efficient inversion formulas for Toeplitz-plus-Hankel matrices using trigonometric transformations, Structured Matrices in Mathematics, Computer Science, and Engineering, II, Contemp. Math., Amer. Math. Soc., Providence, RI, 2001, vol. 281, pp. 247– 264.

Beale E. M. L. Cycling in the dual simplex algorithm, Naval Research Logistics Quarterly, 1955, 2 (4), pp. 269–276. DOI: 10.1002/nav.3800020406.

Voevodin V. V., Tyrtyshnikov E. E. Toeplitz matrices and their applications, Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam, 1984, pp. 7585.

Trench W. F. An algorithm for the inversion of finite Hankel matrices, SIAMJ. Appl. Math, 13, 1965, pp. 1102–1107.

Zohar S. Toeplitz matrix inversion: The algorithm of W. F. Trench, J. Assoc. Comput, Mach.16, 1967, pp. 592–601.

Petrov O. A. A fast algorithm for solving systems of equations with a Toeplitz matrix, Infocommunication technologies, 2006, Vol. 4, No. 1, pp. 57–59.

Rahman Q. I., Schmeisser G. Analytic theory of polynomials, London Mathematical Society Monographs, New Series, 26, Oxford: Oxford University Press, 2002.

Besekersky V. A., Popov E. P. Theory of automatic control systems, Saint Petersburg, Profession, 2003,752 p.

Kodnyanko V. A. Numerical calculation of the static characteristics of a single-row slotted gas-static suspension, Problems of mechanical engineering and reliability of machines, 2002, No. 2, pp. 17–19.

Constantinescu V. N. Gas Lubrication, New York: American Society of Mechanical Engineers, 1969.

Muir T. A treatise on the theory of determinants, Dover Publications, 1960, pp. 516–525.

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Rational Function Interpolation and Extrapolation, Numerical Recipes in C. Cambridge: Cambridge University Press, 1994.

Blahut R.E. Fast Algorithms for Signal Processing, Cambridge University Press, 2010, 469 p. DOI: 10.1017/CBO9780511760921.


GOST Style Citations


1. Fraleigh J. B. Linear Algebra / J. B. Fraleigh, R. A. Beauregard // Addison-Wesley, 1995. – 608 p.

2. Riley K. F. Mathematical methods for physics and engineering/ K. F. Riley, M. P. Hobson, S. J. Bence // Cambridge University Press, 2010. – 455 p.

3. Middlebrook R. D. Input filter considerations in design and application of switching regulators / R. D. Middlebrook // IEEE Industry Applications Society Annual Meeting. – 1976. – P. 366– 382.

4. Carrol J. An input impedance stability criterion allowing more flexibility for multiple loads which are independently designed / J. Carrol // Naval Air Warfare Center. Aircraft Division. Indianapolis. B/812. – 1992.

5. A method of defining the load impedance specification for a stable distributed power system / [C. M. Wildrick, F. C. Lee, B. H. Cho, B. Choi] // IEEE Transactions on Power Electronics. – 1995. – P. 280–285.

6. Коднянко В. А. Устойчивость энергосберегающей адаптивной радиальной гидростатической опоры с ограничением выходного потока смазки / В. А. Коднянко // Журнал Сибирского федерального университета. Техника и технологии, Красноярск. – 2011. – Т. 6, № 4. – С. 907–914.

7. Bradie B. A. Friendly Introduction to Numerical Analysis / B. A. Bradie // Upper Saddle River. New Jersey : Pearson Prentice Hall. – 2006.

8. Smith S. W. Chapter 8: The Discrete Fourier Transform / S. W. Smith // The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego. Calif.: California Technical Publishing. – 1999.

9. Golub G. H. Matrix computations / G. H. Golub, C. F. Van Loan // Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press. Baltimore. – 1996.

10. Heinig G. Efficient inversion formulas for Toeplitz-plus-Hankel matrices using trigonometric transformations / G. Heinig, K. Rost // Structured Matrices in Mathematics. Computer Science. and Engineering. II. Contemp. Math. Vol. 281. Amer. Math. Soc. Providence. RI. – 2001. – P. 247–264.

11. Beale E. M. L. Cycling in the dual simplex algorithm/ E. M. L. Beale // Naval Research Logistics Quarterly2 (4). – 1955. – P. 269–276. DOI: 10.1002/nav.3800020406.

12. Voevodin V. V. Toeplitz matrices and their applications / V. V. Voevodin, E. E. Tyrtyshnikov // Computing Methods in Applied Sciences and Engineering. North-Holland. Amsterdam. – 1984. – P. 75–85.

13. Trench W. F. An algorithm for the inversion of finite Hankel matrices / W. F. Trench // SIAMJ. Appl. Math. – 13. – 1965. – P. 1102–1107.

14. Zohar S. Toeplitz matrix inversion: The algorithm of W. F. Trench / S. Zohar // J. Assoc. Comput, Mach, 16. – 1967. – P. 592–601.

15. Петров О. А. Быстрый алгоритм решения систем уравнения с теплицевой матрицей / О. А. Петров // Инфокоммуникационные технологии. – 2006. – Том 4, № 1. – С. 57–59.

16. Rahman Q. I. Analytic theory of polynomials / Q. I. Rahman, G. Schmeisser // London Mathematical Society Monographs. –New Series. 26. Oxford : Oxford University Press. – 2002.

17. Бесекерский В. А. Теория систем автоматического регулирования / В. А. Бесекерский, Е. П. Попов // Спб.: Профессия, 2003. – 752 с.

18. Коднянко В. А. Численный расчет статических характеристик однорядного щелевого газостатического подвеса / В. А. Коднянко // Проблемы машиностроения и надежности машин. – 2002. – № 2. – С. 17–19.

19. Constantinescu V. N. Gas Lubrication / V. N. Constantinescu // New York: American Society of Mechanical Engineers. – 1969.

20. Muir T. A treatise on the theory of determinants / T. Muir // Dover Publications. – 1960. – P. 516–525.

21. Rational Function Interpolation and Extrapolation / [W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery] // Numerical Recipes in C. Cambridge: Cambridge University Press. – 1994.

22. Blahut R. E. Fast Algorithms for Signal Processing / R. E. Blahut. – Cambridge University Press, 2010. – 469 p. DOI: 10.1017/CBO9780511760921.







Copyright (c) 2020 V. A. Kodnyanko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.