• G. M. Babeniuk National Aviation University, Kyiv, Ukraine.



Correlation Extremal Navigation system, Ford-Fulkerson’s algorithm, magnetic maps, Dijkstra’s algorithm.


Context. The main purpose of Correlation Extremal Navigation system is finding coordinates in case of absence of Global Positioning System signal and as a result high-accuracy maps as the main source of information for finding coordinates are very important. Magnetic field map as the main source of information can include errors values, as an example: not good enough equipment or human factor can cause error value of measurements.

Objective. In order to create high-accuracy maps given work proposes to improve the process of creating magnetic field maps. The given work represents delay tolerant networking as an additional approach for data transmission between magnetic observatory and magnetic station and its improvement.

Method. Improved Dijkstra’s algorithm together with Ford-Fulkerson’s algorithm for finding path with minimum capacity losses, earliest delivery time and maximum bit rate in case of overlapping contacts should be represented in the given work because nowadays, delay tolerant networking routing protocols do not take into account the overlap factor and resulting capacity losses and it leads to big problems

Results. For the first time will be presented algorithm that chooses the route that guarantees the minimum of capacity losses, earliest delivery time and maximum bit rate in the delay tolerant networking with overlapping contacts and increases the probability of successful data transmission between magnetic stations and magnetic observatories.

Conclusions. In order to perform high-accuracy measurement of magnetic field group of people allocate their equipment for magnetic field measurement in remote areas in order to avoid the influence of environment on measurements of magnetometer. Since magnitude of magnetic field can vary dependent on temperature, proximity to the ocean, latitude (diurnal variation of magnetic field) and magnetic storms magnetic station from time to time adjusts its measurements with a help of reference values of magnetic field (magnetic station sends request for reference values to magnetic observatory). The problem of the given approach is that remote areas usually are not covered by network (no Internet) and as a result the adjustment of measurements is impossible. In order to make adjustment of measurements possible and as a result improve accuracy of magnetic maps given work proposed the usage of Delay Tolerant Networking that delivers internet access to different areas around the world and represented its improvement to make its approach even better.The results are published for the first time.

Author Biography

G. M. Babeniuk , National Aviation University, Kyiv, Ukraine.

Post-graduate student, Department of Aeronavigation.


Perdaen D., Armbruster D., Kempf K., Lefeber E. Controlling a re-entrant manufacturing line via the pushpull point, International Journal of Production Research, 2008, № 46 (16), pp. 4521–4536. DOI: 10.1080/00207540701258051.

Armbruster D., Ringhofer C., Jo T. J. Continuous models for production flows, American Control Conference. Boston, MA, USA, 2004, No. 5, pp. 4589–4594. DOI: 10.1109/ACC.2004.182675

Schmitz J. P., Beek D. A., Rooda J. E. Chaos in Discrete Production Systems? Journal of Manufacturing Systems, 2002, No. 21 (3), pp. 236–246. DOI: 10.1016/S02786125(02)80164-9

Bramson M. Stability of queueing networks, lecture notes in mathematics, Journal of Probability Surveys, 2008, No. 5, pp. 169–345. DOI: 10.1214/08-PS137.

Tian F., Willems S. P., Kempf K. G. An iterative approach to item-level tactical production and inventory planning, International Journal of Production Economics, 2011, No. 133, pp. 439–450. DOI: 10.1016/j.ijpe.2010.07.011

Chankov S., Hütt M., Bendul J. Influencing factors of synchronization in manufacturing systems, International Journal of Production Research, 2018, No. 56 (14), pp. 4781–4801. DOI: 10.1080/00207543.2017.1400707

Kempf K. Simulating semiconductor manufacturing systems: successes, failures and deep questions, Proceedings of the 1996 Winter Simulation Conference, Institute of Electrical and Electronics Engineers. – Piscatawa. New Jersey, 1996, pp. 3–11. DOI: 10.1109/WSC.1996.873254

Bitran G., Haas E., Hax A. Hierarchical production planning: a two-stage system, Operations Research, 1982, No. 30, pp. 232–251. DOI: 10.1287/opre.30.2.232

Pihnastyi O., Khodusov V. D. Optimal Control Problem for a Conveyor-Type Production Line, Cybern. Syst. Anal., 2018, No. 54(5), pp. 744–753. DOI: 10.1007/s10559-0180076-2

Pihnastyi O. M., Yemelianova D., Lysytsia D. Using pde model and system dynamics model for describing multioperation production lines, EasternEuropean Journal of Enterprise Technologies, 2020, No. 4 (4(106)), pp. 54–60. DOI: 10.15587/17294061.2020.210750

Wonham W., Cai K., Rudie K. Supervisory Control of Discrete-Event Systems: A Brief History – 1980-2015, 20th IFAC World Congress IFAC-PapersOnLine, 2017, No. 50(1), pp. 1791–1797. DOI: 10.1016/j.ifacol.2017.08.164

Gross D., Harris C. M. Fundamentals of Queueing Theory. New York, 1974, 490 p.




How to Cite

Babeniuk , G. M. . (2021). DELAY TOLERANT NETWORKING SUPPORT FOR CREATION HIGH-ACCURACY MAGNETIC FIELD MAPS. Radio Electronics, Computer Science, Control, 1(1), 144–157.



Progressive information technologies