SOLVING OF LINEAR SPEED WITH FIXED BOUNDARY CONDITIONS IN DIFFERENTIAL TRANSFORMATION (GENERAL CASE)
Keywords:
linear speed problems, fixed boundary conditions, multipoint boundary value problem, differential transformations.Abstract
Linear speed problems with fixed boundary conditions and control influence vector (general case) are considered, for the solution of which Pukhov’s differential transformations serve as a main mathematical apparatus. The merits of the proposed approach with respect to a number of known methods are shown.References
Симонян С.О. Прикладная теория оптимального управления. -Ереван: 2005.-180 с. (на армянском языке).
Брайсон А., Хо Ю-Ши. Прикладная теория оптимального управления.-М.: Мир, 1972.-554 с.
Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1983. - 392 с.
Симонян С.О. Основы синтеза специализированных вычислителей динамических задач нелинейного программирования : Автореф. дис. д.т.н. - Ереван, 1993. - 47 с.
Фельдбаум А.А. Основы теории оптимальных автоматических систем. М.: Наука, 1966. - 623 с.
Пухов Г.Е. Дифференциальные спектры и модели. -Киев: Наукова думка, 1990. - 184с.
Симонян С.О., Аветисян А.Г., Казарян Д.А. Метод решения задач оптимального управления, основанный на дифференциальных преобразованиях //Вестник ГИУА. Сер. “Моделирование, оптимизация, управление”. –2007. -Вып.10, том 2. - С.102-114.
Симонян С.О., Аветисян А.Г. Прямой метод решения линейных многоточечных крaевых задач // Известия НАН РА и ГИУА.Сер. ТН. -2002. -Т. LV, N 1. - С.95-103.
Симонян С.О., Аветисян А.Г., Казарян Д.А. Метод решения линейных многоточечных крaевых задач, основанный на дифференциально-дирихлеевских преобразованиях // Вестник ИАА.2007. -Т.2. -С 253-257 (на армянском языке).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 S. O. Simonian, A. G. Avetisian, D. A. Kazarian
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.