BEHAVIOR CLASSIFICATION OF CONTROL UNIT OF SYSTEMS

Authors

  • M. O. Poliakov National University “Zaporizhzhia Polytechnic”, Zaporizhzhia, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2022-3-17

Keywords:

system behavior, control automaton, hierarchy of automata, integrated system, behavior classification.

Abstract

Context. The behavior of the system is included in the basic concepts that characterize its functioning. In an event-driven system, behavior is modeled using a state machine. Known classifications of behavior take into account the genus and type of automaton. At the same time, in modern systems, control automata are integrated into hierarchies and have a number of new properties that are not reflected in their classifications.

Objective. The purpose of the work is to systematize the forms of specifying the behavior of integrated systems and methods for changing the behavior in the process of their use. The novelty of the proposed classification lies in taking into account the behavior of new types of non-binary, semantic, controlled and changeable individual automata and the structures of these automata.

Method. The essence of behavior is presented as the ambiguity of reactions to the input signals of the control automaton, which manifests itself in a certain pattern of changing its states and outputs. When classifying behaviors, the expediency of exploratory behavior is determined. Such ways of achieving the goal as adaptation, change or absorption of the environment, change in the goals of behavior are noted. According to the level of complexity of behavior, systems with predetermined, regulated, organizing, predictable and autonomous behavior are distinguished. Along with the automaton model of behavior, the importance of modeling behavior in the form of a combination of statements is noted. The importance of describing the possible and emergency behavior of the system is noted. A classification of the system’s behavior in terms of constancy and variability is proposed. The structure and principles of the implementation of changeable behavior within the framework of the processes of external control of the automaton and its selfgovernment are described. Based on the concept of arity of behavior, the functional and technological behavior of a finite automaton are singled out. As part of the classification of behavior by the level of formation, the switching, combinational and automatic behavior of states, as well as the behavior of the automaton in the contours of activity and the typical behavior of the automaton in the hierarchy, are described.

Experiments. With the use of the proposed classification features, the behavior of control devices of monitoring systems for power transformer parameters, object temperature control and integrated hierarchical systems is analyzed.

Results. The proposed classification describes the directions for specifying behavior in complex integrated systems according to 13 main and 84 detailing features, which facilitates the process of designing behavior and highlights new system capabilities.

Conclusions. The actual problem of systematization of the behavior of control devices of systems has been solved. Classification features give directions for the use of standard solutions for describing the behavior of the system, which simplifies the process and reduces the complexity of designing its functional structure.

Author Biography

M. O. Poliakov, National University “Zaporizhzhia Polytechnic”, Zaporizhzhia, Ukraine

Dr. Sc., Associate professor, Professor of the Electrical and Electronic Apparatuses Department

References

Koverzneva I. A. avt.-sost. Psikhologiya aktivnosti i povedeniya: ucheb.-metod. kompleks. Minsk, izd-vo MIU, 2010. 316 p.

Minton E. A., Lynn R. Belief Systems, Religion, and Behavioral Economics. New York, Business Expert Press LLC, 2014, 160 p. ISBN 978-1-60649-704-3

Cao L. In-depth behavior understanding and use: The behavior informatics approach, Information Sciences, 2010, Vol. 180, Issue 17, pp. 3067–3085. https://doi.org/10.1016/j.ins.2010.03.025

Gero J., Kannengiesser U., Chakrabarti A., Blessing L.T.M. Eds. The Function-Behaviour-Structure Ontology of Design, An Anthology of Theories and Models of Design. Berlin, Springer, 2014, pp. 1– 45.https://link.springer.com/chapter/10.1007/978-1-40205131-9_21

Volkova V. N., Denisov A. A. Teoriya sistem i sistemnyy analiz : uchebnik dlya akademicheskogo bakalavrata, 2-ye izd. Moscow, Yurayt, 2014, 616 p.

Shornikov Yu., Bessonov A., Dostovalov D. Specification and instrumental analysis of hybrid systems, Science Bulletin of the Novosibirsk State Technical University, 2015, No. 4(61), pp. 101–117 (in Russian). http://dx.doi.org/10.17212/1814-1196-2015-4-101-117

Maryasin O., Kolodkina A. S., Ogarkov A. A. Computer Modelling «Smart Building», Modeling and Analysis of Information Systems, 2016, Vol. 23(4), pp. 427–439. https://doi.org/10.18255/1818-1015-2016-4-427-439

Glushkov, V. M. Sintez tsifrovykh avtomatov. Moscow, Fizmatizdat, 1962, 476 p.

Karpov YU. G. Teoriya avtomatov. Sankt Peterburg, Piter, 2002, 224 p.

Poliakov M. A. Teoretiko-mnozhestvennyye modeli elementov i struktur integrirovannykh kontrollernykh sistem, Systemni tekhnolohiyi : rehionalʹnyy mizhvuzivsʹkyy zbirnyk naukovykh pratsʹ, 2012, No. 2 (79), pp. 75–81.

Poliakov M. A., Andriyas I. A. Teoretiko-mnozhestvennyye modeli funktsionalʹnykh struktur gibridnykh avtomatov sistem upravleniya, Systemni tekhnolohiyi : rehionalʹnyy mizhvuzivsʹkyy zbirnyk naukovykh pratsʹ, 2018, No. 3 (116), pp. 146–152.

Poliakov M. A., Andrias I. A. Konechnyye avtomaty s nebinarnymi elementami mnozhestv, Systemni tekhnolohiyi : rehionalʹnyy mizhvuzivsʹkyy zbirnyk naukovykh pratsʹ, 2019, No. 2 (121), pp. 85–94.

Poliakov M. O., Subbotin S. O., Poliakov O. M. Interoperability of Integrated Hierarchial Systems / M. O. Poliakov, // Systemni tekhnolohiyi : rehionalʹnyy mizhvuzivsʹkyy zbirnyk naukovykh pratsʹ, 2021, No. 2 (133), pp. 68–78. https://doi.org/10.34185/1562-9945-2-133-2021-08

Poliakov M. O., Subbotin S., Andrias I. // Control System Control Unit FSM Semantic Models, Systemni tekhnolohiyi, rehionalʹnyy mizhvuzivsʹkyy zbirnyk naukovykh pratsʹ, 2019, No. 5 (124), pp. 43 – 53. https://doi.org/10.34185/15629945-5-124-2019-05.

Poliakov M. Cognitive Control Systems: Structures and Models, Electrotechnic and Computer Systems, 2017, No. 101, pp. 387–393. https://dx.doi.org/ 10.15276/eltecs.25.101.2017.46.

Stetter R. Approaches for Modelling the Physical Behavior of Technical Systems on the Example of Wind Turbines, Energies, 2020, No. 13(8), pp. 2087. https://doi.org/10.3390/en13082087

Letichevskiy A. Ad. Insertsionnoye modelirovaniye, Upravlyayushchiye sistemy i mashiny, 2012, No. 6, pp. 3–14. http://dspace.nbuv.gov.ua/handle/123456789/83102

Letichevskiy, A. A. V. M. Glushkov and Modern Informatics, Visnyk Natsionalʹnoyi akademiyi nauk Ukrayiny, 2013, No. 08, pp. 21–33. https://doi.org/10.15407/visn2013.08.021

Glushkov V. M. Editor(s): Academician J. G. Gvishiani. Mathematics and Cybernetics, Science, Technology and Global Problems. Pergamon, 1979, pp. 173–180. https://doi.org/10.1016/B978-0-08-024469-3.50029-2

Pedroni Volnei A. Finite State Machines in Harware: Theory and Design (with VHDL and SystemVerilog), Pedroni, The MIT Press, 2013. https://doi.org/10.7551/mitpress/9657.001.0001

Drumea A., Popescu C. Finite state machines and their applications in software for industrial control, 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004, Vol. 1, pp. 25–29. https://doi.org/10.1109/ISSE.2004.1490370

Gaaze-Rapoport, M. G., Pospelov D. A. Ot ameby do robota: modeli po-vedeniya. Moscow, Nauka. Gl. red. fiz.mat. lit., 1987, 288 p. (Problemy nauki i tekhnicheskogo progressa).

Tsetlin M. L. Issledovaniya po teorii avtomatov i modelirovaniyu biologicheskikh sistem. Glavnaya redaktsiya fiziko-matematicheskoy literatury izd-va «Nauka», Moscow, 1969, 316 p.

Averkin A. N., Gaaze-Rapoport M. G., Pospelov D. A. Tolkovyy slovarʹ po iskusstvennomu intellektu. Moscow, Radio i svyazʹ, 1992, 256 p.

Varshavskiy, V. I. O povedenii stokhasticheskikh avtomatov s peremennoy strukturoy, Avtomatika i telemekha-nika, 1969, Vol. 24, No. 3, pp. 353–360.

Tîrnăucă C., José L. Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study. Montaña, Santiago Ontañón et al. Sensors (Basel), 2016 Jul; No. 16(7), P. 958. Published online 2016 Jun 24. https://doi.org/10.3390/s16070958

Wonham W., Cai K. Supervisory Control of Discrete-Event Systems, Communication and Control Engineering, 2019, Springer, 487 p. https://doi.org/10/1007/978-3-319-77452-7

Poliakov M. A. Identifikatsiya teplovykh parametrov silovogo maslyanogo transformatora po dannym monitoringa parametrov, Visnyk Skhidnoukrayinsʹkoho natsionalʹnoho universytetu, 2007, No. 11, Ch. 1 (117), pp. 167–173.

Nepomnyashchikh, V. A. Modeli avtonomnogo poiskovogo povedeniya, Ot modeley povedeniya k iskusstvennomu intellektu, Kollektivnaya monografiya pod obshch. red. Redʹko V. G. Moscow, URSS, 2006, pp. 200–242.

Wittenmark B. (1995). Adaptive Dual Control Methods, An Overview. Lund University, 1995, June CiteSeerX 10.1.1.25.7446.

Rastrigin L. A. Adaptatsiya slozhnykh sistem. Riga, Zinatne, 1981, 375 p.

Poliakov M., Subbotin S., Poliakov O. Performance indicators of models of non-binary control automates, Experience of Designing and Application of CAD Systems: IEEE 16th International Conference. Lviv, 22–26 Feb. 2021, proceedings, pp. 38–42. http:doi.org/10.1109/CADSM52681.2021.9385220

Poliakov M., Subbotin S., Poliakov O. The contour of causality in control automata of systems [Electronic resource], Proceedings of the Fourth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2021). Zaporizhzhia, April 27, 2021, ed.: S. Subbotin. Aachen: CEUR-WS, 2021, pp. 368–378. (CEUR-WS.org, vol. 2608). Access mode: http://ceur-ws.org/Vol-2864/paper32.pdf https://doi.org/10.32782/cmis/2864-32

Poliakov M., Subbotin S., Poliakov O. Set-theoretical FSM Models Activity Subsystem for Cognitive Control Systems, Experience of Designing and Application of CAD Systems: IEEE 15th International Conference. Polyana, 26 Feb. – 2 March. 2019, proceedings, pp. 1–4. https://doi.org/10.1109/CADSM.2019.8779283

Xuesen L. Multi-behaviors Finite State Machine, Information, Computing and Telecommunication: IEEE Youth Conference on 2009: proceedings, pp. 201–203. https://doi.org/10.1109/YCICT.2009.5382390

Gramlich G. Probabilistic and Nondeterministic Unary Automata, Lecture Notes in Computer Science. Springer, 2003, Vol. 2747, pp. 460–469. http://dx.doi.org/10.1007/978-3-540-45138-9_40

Campeanu C. Non-Deterministic Finite Cover Automata, Scientic Annals of Computer Science, 2015, Vol. 25 (1), pp. 3–28. http://doi.org/10.7561/SACS.2015.1.3

Anokhin P. K. Idei i fakty v razrabotke teorii funktsionalʹnykh sistem, IV-ya Vserossiyskaya nauchnotekhnicheskaya konferentsiya «Neyroinformatika-2002». Problemy intellektualʹnogo upravleniya – obshchesistemnyye, evolyutsionnyye i neyrosetevyye aspekty. Materialy diskussii. Moscow, Izd-vo Moskovskogo gosudarstvennogo inzhenerno-fizicheskogo instituta (MIFI), 2003, pp. 40–57.

Drusinsky D. Modeling and Verification Using UML Statecharts. A Working Guide to Reactive System Design, Runtime Monitoring and Execution-Based Model Checking. Book Elsevier Inc., 2006, P. 309. https://doi.org/10.1016/B978-0-7506-7949-7.X5000-4

Colgren R. D. Basic MATLAB, Simulink and Stateflow [Electronic resource], AIAA, 2007. Access mode: https://arc.aiaa.org/doi/book/10.2514/4.861628

Kontrollery programmiruyemyye. CH. 3 Yazyki programmirovaniya GOST R MEK 61131–3–2016 (IEC 61131– 3:2013, IDT). Moscow, Standartinform, 2016, 227 p.

FSM Simulator code. Available [Electronic resource]. – Access mode: https://gitlab.com/Eonus/fsm-simulator (Accessed Feb. 24, 2022).

Poliakov M. A., Andriyas I. A., Konogray S. P., Vasilevskiy V. V. Kognitivnoye upravleniye zhiznennym tsiklom izolyatsii obmotok maslonapolnennogo silovogo transformatora, Visnyk Natsionalʹnoho tekhnichnoho universytetu “KHPI”. Seriya “Elektrychni mashyny ta elektromekhanichne peretvorennya enerhiyi”, 2018, No. 5 (1281), pp. 90–96.

Kushik, N. G. Metody sinteza ustanovochnykh i razlichayushchikh eksperimentov s nedeterminirovannymi avtomatami. Avtoreferat dissertatsii na soiskaniye uchenoy stepeni kandidata fiziko-matematicheskikh nauk: 05.13.01 «Sistemnyy analiz, upravleniye i obrabotka informatsii (po otraslyam)». Tomsk, TGU, 2013, 20 p.

Downloads

Published

2022-10-19

How to Cite

Poliakov, M. O. (2022). BEHAVIOR CLASSIFICATION OF CONTROL UNIT OF SYSTEMS . Radio Electronics, Computer Science, Control, (3), 183. https://doi.org/10.15588/1607-3274-2022-3-17

Issue

Section

Control in technical systems