FUZZY MODELS IN PROBLEMS OF COMPLEX SYSTEMS CONTROL

Ye. I. Kucherenko, O. D. Driuk

Abstract


An analytical review of existing models and methods of applied problem solving is performed. The necessity of developing of fuzzy models of mobile objects is shown. A new formal model of mobile objects control as minimization of the control error is developed. It is shown
that the problem of optimal mobile objects control is to find the optimal (or suboptimal) function of mobile objects control. Depending on the values of certain external parameters, this function returns a value that determines the future direction of the mobile object movement. One of the most perspective approaches to the control function optimization is development and adjustment of fuzzy model of mobile object movement. Development of a model based on fuzzy rules will provide its flexibility. The fuzzy model as a set of production rules has been further developed. This model, unlike the existing ones, allows minimizing the error of mobile objects control. The adequacy of the developed models has been confirmed. It was shown that these models provide good mobile objects control.

Keywords


mobile object, fuzzy model, movement control, production rules, model adequacy, track, trajectory.

References


Емельянов, В. В. Теория и практика эволюционного моделирования / В. В. Емельянов, В. В. Курейчик, В. М. Курейчик. – М. : Физматлит, 2003. – 432 с.

Rutkowski, L. Computational intelligence – methods and techniques / L. Rutkowski. – Springer, 2008. – 514 p.

Кучеренко, Е. И. Стохастические модели и методы субоптимальной маршрутизации сложных объектов. / Е. И. Кучеренко, А. Д. Дрюк // Бионика интеллекта. – 2013. – №1 (80). – С. 45–53.

Тимченко, Д. Н. Синтез логико-динамической системы оптимального управления нелинейным неголономным объектом типа «мобильный робот» / Д. Н. Тимченко // Технические науки в России и за рубежом: материалы междунар. науч. конф. (г. Москва, май 2011 г.). – М. : Ваш полиграфический партнер, 2011. – С. 43–48.

Атанов, С. К. Программные средства реализации адаптивных моделей с нечеткой логикой / С. К. Атанов // Вестник науки КазАТУ им. С. Сейфуллина. – 2009. – №2. – С. 27–30.

Mucientes, M. Learning Fuzzy Robot Controllers to Follow a Mobile Object / M. Mucientes, J. Casillas // International Conference on Machine Intelligence (Tozeur, Tunisia, November 2005). – P. 566–573.

Tsoukalas, L. H. Fuzzy and Neural Approaches in Engineering / L. H. Tsoukalas, R. E. Uhrig. – John Wiley & Sons, Inc. New York, USA, 1996. – 587 p.

Zimmermann, H.-J. Fuzzy Set Theory and its Applications. 3rd ed. / H.-J. Zimmermann. – Dordrecht : Kluwer Academic Publishers, 1996. – 315 p.


GOST Style Citations






DOI: https://doi.org/10.15588/1607-3274-2014-1-10



Copyright (c) 2014 Ye. I. Kucherenko, O. D. Driuk

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.