SURFACE DISCRETIZATION OF R-FUNCTIONS DEFINED GEOMETRICAL OBJECTS

Authors

  • А. A. Lisnyak Zaporizhzhia national university, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2014-1-12

Keywords:

R-функция, визуализация, геометрическая модель, дискретная модель, метод конечных элементов.

Abstract

This article describes actual problem of an automatic generation of finite elements for complex geometrical objects defined by implicit R-functions of V. L. Rvachev. Rvachev’s approach of geometrical objects description is universal. R-functions allow create models of complex solids in constructive manner. Author describes functional approach for modeling of solids and methods of surface meshing in the first section of the article. This section also contains mathematical model of the surface finite elements mesh. Section II describes approaches for the surface mesh optimization. Author describes new some functions of quality of the mesh. Proposed approaches based on minimization of deviation between functional and mesh representations of geometrical objects. Proposed approaches allow define regular and irregular elements of the mesh for local refinement of the mesh. Author uses differential characteristics of the mesh for the non-uniform mesh generation. Surface curvature used for control of the non-uniform mesh generation.

References

Зенкевич, О. Метод конечных элементов в теории сооружений и механике сплошной среды / О. Зенкевич, И. Чанг. – М. : Недра, 1974. – 238 с.

Liseikin, V. D. Grid generation methods. Second edition / Vladimir D. Liseikin. – Spring, 2010. – 390 p.

Галанин, М. П. Разработка и реализация алгоритмов трехмерной триангуляции сложных пространственных областей: итерационные методы / М. П. Галанин, И. А Щеглов. – М. : ИПМ им. М.В. Келдыша РАН, 2006. – № 9. – 32 с. – (Препринт / ИПМ им. М.В. Келдыша РАН).

Галанин, М. П. Разработка и реализация алгоритмов трехмерной триангуляции сложных пространственных областей: прямые методы / М. П. Галанин, И. А Щеглов. – М. : ИПМ им. М. В. Келдыша РАН, 2006. – № 10. – 32 с. – (Препринт / ИПМ им. М.В. Келдыша РАН).

George, P. Delaunay Triangulation and Meshing. Application to Finite / P. George, H. Borouchaki. – Hermes Science Publications, 1998. – 413 р.

Rebay, S. Efficient Unstructured Mesh Generation by Means nof Delaunay Triangulation and Bowyer-Watson Algorithm // Journal Of Computational Physics. – 1993. – № 106. – P. 125–138.

Freitag, L. A. Tetrahedral Mesh Improvement Using Swapping and Smoothing / L. A. Freitag, C. Ollivier-Gooch // International Journal for Numerical Methods in Engineering. – 1995. – № 40. – P. 3979–4002.

George, P. L. Tet meshing : construction, optimization and adaptation / P. L. George // Proceedings of 8th International Meshing Roundtable. – 1999. – P. 133–141.

Puppo, E. RGB subdivision / E. Puppo, D. Panozzo // IEEE Transactions on Visualization and Computer Graphics. – 2009. – № 15(2). – P. 295–310.

Puppo, E. Selectively refinable subdivision meshes / E. Puppo // Symposium on Geometry Processing 2010. – 2010. – P. 153–162.

Максименко-Шейко, К. В. R-функции в математическом моделировании геометрических объектов в 3D по информации в 2 D / К. В Максименко-Шейко, Т. И. Шейко // Вісник Запорізького національного університету : збірник наукових статей. Фізико-математичні науки. – 2010. – № 1. – С. 98–104

Рвачев, В. Л. Теория R-функций и некоторые ее приложения / В. Л. Рвачев. – К. : Наукова думка, 1982. – 106 с.

Chernyaev, E. V. Marching Cubes 33: Construction of Topologically Correct Isosurfaces / Evgeni V. Chernyaev // Computer Graphics and Visualization : GRAPHICON’95, 3–7 July, 1995. – Saint-Petersburg, 1995. – С. 21–29.

Efficient Implementation of Marching Cubes Cases with Topological Guarantees / Thomas Lewiner, H lio Lopes, Antonio Wilson Vieira, Geovan Tavares // Journal of Graphics Tools. – 2003. – № 8 (2) – P. 1–15.

Published

2014-04-28

How to Cite

Lisnyak А. A. (2014). SURFACE DISCRETIZATION OF R-FUNCTIONS DEFINED GEOMETRICAL OBJECTS. Radio Electronics, Computer Science, Control, (1). https://doi.org/10.15588/1607-3274-2014-1-12

Issue

Section

Mathematical and computer modelling