• V. I. Dubrovin Zaporizhzhia National Technical University, Ukraine, Ukraine
  • J. V. Tverdohleb Zaporizhzhia National Technical University, Ukraine, Ukraine
  • V. V. Kharchenko Zaporizhzhia National Technical University, Ukraine, Ukraine



ECG delineation, ECG wavelet analysis, ECG fiducial points, wavelet transform modulus maxima, neural network heartbeat classifier.


An existing ECG analysis and interpretation software is reviewed in the paper. A wavelet-based ECG delineation algorithm which performs QRS detection and provides as well the locations of the peak(s) of P, Q, R, S, and T waves, and the P, QRS, and T wave boundaries using a single analysis stage: the dyadic wavelet transform of the ECG signal is proposed. A neural network for the classification of heartbeats is presented. ECG analysis and interpretation program is developed. The delineation algorithm has been validated using QTDB. The results have been compared with those of other published approaches and have shown that the developed algorithm provides a reliable and accurate delineation of the ECG signal, outperforming other algorithms, and with errors well within the observed intercardiologist variations. The most significant improvement was found in the T wave and P wave delineation.


SCHILLER ECG Measurement and Interpretation Software for Children and Adult ECGs [Електронний ресурс]. – Режим доступу:

SAECG Analysis [Електронний ресурс]. – Режим доступу:

Heart Rate Variability [Електронний ресурс]. – Режим доступу:

Marquette 12SL ECG analysis program [Електронний ресурс]. – Режим доступу:

GE Healthcare Cardiosoft [Електронний ресурс]. – Режим доступу: Categories/Diagnostic_ECG/Stress_Testing/Cardiosoft#.

Fukuda Denshi Resting ECG Software [Електронний ресурс]. – Режим доступу:

Дроздов, Д. В. Автоматический анализ ЭКГ: проблемы и перспективы [Текст] / Д. В. Дроздов, В. М. Леванов // Здравоохр. и мед. техн. – 2004. – № 1. – С. 10–13.

Mallat, S. Zero-crossings of a wavelet transform / S. Mallat // IEEE Trans. on Information Theory. – 1991. – No. 37 (4). – P. 1019–1033.

PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals [Circulation Electronic Pages] / A.L. Goldberger, L.A.N Amaral, L. Glass, J.M. Hausdorff // Circulation – 2000. – Vol. 101 (23). – e215-e220. – Available online: http://

PhysioNet: the research resource for complex physiologic signals [Електронний ресурс]. – Режим доступу:

A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG / P. Laguna, R. Mark, A. Goldberg, G. Moody // Computers in Cardiology. – 1997. – Vol. 24. – P. 673–676.

ANSI/AAMI EC57:1998 Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms.

A wavelet-based ecg delineator: evaluation on standard databases / J. Martinez, R. Almeida, S. Olmos, A. Rocha, P. Laguna // IEEE Trans. on Biomedical Engineering. – 2004. – Vol. 51 (4). – P. 570–581.

Laguna, P. Automatic Detection of Wave Boundaries in Multilead ECG Signals: Validation with the CSE Database / P. Laguna, R. Janй, P. Caminal // Computers and Biomedical Research. – 1994. . – Vol. 27. – P. 45–60.

Wavelet-based ECG delineation on a wearable embedded sensor platform / [Boichat N., Khaled N., Rincon F., Atienza D.] // Proc 6th IEEE Int Workshop on Body Sensor Networks. – 2009. – P. 256–261.



How to Cite

Dubrovin, V. I., Tverdohleb, J. V., & Kharchenko, V. V. (2014). AUTOMATED SYSTEM FOR THE ANALYSIS AND INTERPRETATION OF ECG. Radio Electronics, Computer Science, Control, (1).



Progressive information technologies

Most read articles by the same author(s)