ON-BOARD LOG AND COORDINATE TRANSFORMATION FOR DETECTED OBJECTS ON THE SURFACE OF WATER

Authors

  • V. M. Smolij National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, Ukraine
  • N. V. Smolij National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2024-3-9

Keywords:

UAV, flight controller, mission log, neural network, geographic coordinates, recognized images, forecast accuracy, image post-processing

Abstract

Context. The relevance of the work is to the demand for UAV technologies with the integration of artificial intelligence in today’s conditions.

Objective. The goal of the work is to develop a minimum working version of the UAV explorer and software for controlling the UAV data.

Method. The proposed mathematical description, which calculates the coordinates of the object, based on the dimensions of the original image from the camera, the dimensions of the image with which the neural network works, the angle of the field of view of the camera, the position of the UAV and the angles of roll, pitch and yaw, allows you to transfer the coordinates of the object, of the found NN, in the image to the geographical coordinates, thereby moving away from the rigid reference to the coordinates of the UAV.

Results. The problem of systematization of objects detected during the mission on the surface of water bodies was solved by
creating a flight log, organizing interaction with a neural network, applying post-processing of recognized objects, mathematically transforming the coordinates of objects for display and visualization into geographic coordinates, thereby move away from the rigid reference to the coordinates of the UAV.

Conclusions. A workable logbook generation and storage system has been created, which takes into account the peculiarities of information presentation in the logbook, and ensures effective interaction of the components of the created information system within the proposed hardware and software complex, which allows organizing the process of researching water bodies using the SITL environment from the flight controller developers.

Author Biographies

V. M. Smolij, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

Dr. Sc., Professor, Professor of the Department of Information systems and technologies

N. V. Smolij, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Student of the Department of Information systems and technologies

References

Byun J., Kim J., Eom D., Lee D., Kim C., Kim H. J. Image-Based Time-Varying Contact Force Control of Aerial Manipulator Using Robust Impedance Filter, IEEE Robotics and Automation Letters, 2024, Vol. 9 (5), pp. 4854– 4861. DOI: 10.1109/LRA.2024.3382963

Wang Q., Wang W., Suzuki S. UAV trajectory tracking under wind disturbance based on novel antidisturbance sliding mode control, Aerospace Science and Technology, 2024, №149, pp. 109–138. DOI: 10.1016/j.ast.2024.109138

Han Y., Liang Y., Zhang L., Cai B., Li Y., Li B. Bumpless transfer switched control of aircraft for heavy payload dropping missions, Aerospace Science and Technology, 2024, Vol. 148, №109067, pp. 127–145. DOI: 10.1016/j.ast.2024.109067

Tang J., Xie N., Li K., Liang Y., Shen X. Trajectory Tracking Control for Fixed-Wing UAV Based on DDPG, Journal of Aerospace Engineering, 2024, 37 (3), art. no. 04024012, pp. 251–283. DOI: 10.1061/JAEEEZ.ASENG-5286

Fanti F., Cantelli L., Currie P. J., Funston G. F., Cenni N., Catellani S., Chinzorig T., , Tsogtbaatar K. H., Barsbold R. High-resolution UAV maps of the Gobi Desert provide new insights into the Upper Cretaceous of Mongolia, Cretaceous Research, 2024, Vol.161, №105916, pp. 286–301. DOI: 10.1016/j.cretres.2024.105916

Rangan S., Shanmugam Y., Valluvan G., Prakash T. A customized drone for ocean and atmospheric measurements and its performances, Maritime Technology and Research, 2024, Vol. 6 (3), № 267638, pp. 356–385. DOI: 10.33175/mtr.2024.267638

Buatik A., Thansirichaisree P., Kalpiyapun P., Khademi N., Pasityothin I., Poovarodom N. Mosaic crack mapping of footings by convolutional neural networks, Scientific Reports, 2024, Vol.14 (1), № 7851, pp. 471–495. DOI: 10.1038/s41598-024-58432-w

Putkiranta P. Räsänen A., Korpelainen P., Erlandsson R., Kolari T.H.M., Pang Y., Villoslada M., Wolff F., Kumpula T., Virtanen T. The value of hyperspectral UAV imagery in characterizing tundra vegetation, Remote Sensing of Environment, 2024, Vol. 308, № 114175, pp. 23–45. DOI: 10.1016/j.rse.2024.114175

Zaki N.H.M., Hossain M. S. Optimum image alignment setting selection for structure-from-motion photogrammetry using Remotely Piloted Aircraft Systems (RPAS) to support coral habitat classification, Remote Sensing Applications: Society and Environment, 2024, Vol. 35, № 101233, pp. 243–254. DOI: 10.1016/j.rsase.2024.101233

Bakirci M. Enhancing air pollution mapping with autonomous UAV networks for extended coverage and consistency, Atmospheric Research, 2024, Vol. 306, № 107480, pp. 320–342. DOI: 10.1016/j.atmosres.2024.107480

Jiang D., Dong C., Ma Z., Wang X., Lin K., Yang F., Chen X. Monitoring saltwater intrusion to estuaries based on UAV and satellite imagery with machine learning models, Remote Sensing of Environment, 2024, Vol. 308, № 114198, pp. 211–232. DOI: 10.1016j.rse.2024.114198

Cheng J., Zhu Y., Zhao Y., Li T., Chen M., Sun Q., Gu Q., Zhang X. Application of an improved U-Net with image-toimage translation and transfer learning in peach orchard segmentation, International Journal of Applied Earth Observation and Geoinformation, 2024, Vol. 130, № 103871, pp. 1003– 1021. DOI: 10.1016/j.jag.2024.103871

Nt S. K., Sai G. U., Duba P. K. P., Rajalakshmi Real Time Vision Based Obstacle Avoidance for UAV using YOLO in GPS Denied Environment, OCIT 2023. 21st International Conference on Information Technology, Proceedings, 2023, pp. 586–591. DOI: 10.1109OCIT59427.2023.10431039

Ryu I.-C., Ham J.-I., Park J.-O., Joeng J.-W., Kim S.-C., Ahn H.-S. Indoor Pedestrian-Following System by a Drone with Edge Computing and Neural Networks: Part 1, System Design. International Conference on Control, Automation and Systems, 2023, pp. 1526–1531. DOI: 10.23919/ICCAS59377.2023.10316832

Brovkina V. R., Ermakov A. S., Shevketova E. S., Chernetskaya N. N., Basan E. S. Algorithm for Finding a Descriptive Path for Delivering Cargo to Hard-to-Reach Areas, Proceedings of the 2023 IEEE 16th International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering, APEIE 2023, 2023, pp. 1110–1115. DOI: 10.1109APEIE59731.2023.10347814

Moradi Sizkouhi A. M., Esmailifar S. M., Aghaei M., Karimkhani M. An integrated software package for autonomous aerial monitoring of large scale PV plants, RoboPV:Energy Conversion and Management, 2022, Vol. 254, № 115217, pp. 1123–1139. DOI: 10.1016j.enconman.2022.115217

Giovagnola J., Fernandez M. M., Beneder R., Schmitt P., Cuellar M. P., Santos D. P. M. Multisensor Avionics Architecture for BVLOS Drone Services, Journal of Physics: Conference Series, 2023, Vol. 2526 (1), № 012084, pp. 126–145. DOI: 10.1088/1742-6596/2526/1/012084

Azevedo P., Santos V. Comparative analysis of multiple yolo-based target detectors and trackers for adas in edge devices, Robotics and Autonomous Systems, 2024, Vol. 171, №104558, pp. 345–361. doi:10. 1016/j.robot.2023.104558.

Sanjai Siddharthan M., Aravind S., Sountharrajan S. Realtime road hazard classification using object detection with deep learning, Lecture Notes in Networks and Systems, 2024, Vol. 789 LNNS, pp. 479–492. doi:10.1007/978-981-99-6586-1_33.

Smolij V. M., Smolij N. V., Sayapin S. P. Search and classification of objects in the zone of reservoirs and coastal zones, CEUR Workshop Proceedings, 2024, N 3666, pp. 37–51. EID: 2-s2.0-85191443231

Downloads

Published

2024-11-03

How to Cite

Smolij, V. M., & Smolij, N. V. (2024). ON-BOARD LOG AND COORDINATE TRANSFORMATION FOR DETECTED OBJECTS ON THE SURFACE OF WATER. Radio Electronics, Computer Science, Control, (3), 93. https://doi.org/10.15588/1607-3274-2024-3-9

Issue

Section

Neuroinformatics and intelligent systems