THE INSTANCE INDIVIDUAL INFORMATIVITY EVALUATION FOR THE SAMPLING IN NEURAL NETWORK MODEL SYNTHESIS
DOI:
https://doi.org/10.15588/1607-3274-2014-2-10Keywords:
sample, instance selection, data reduction, neural network, data dimensionality reduction.Abstract
The problem of mathematical support development is solved to automate the sampling at diagnostic and recognizing model building by precedents. The object of study is the process of diagnostic and recognizing neural network model building by precedents. The subject of study is the sampling methods for neural network model building by precedents. The purpose of the work is to increase the speed and quality of the formation process of selected training samples for neural network model building by precedents. The method of training sample selection is proposed which for a given initial sample of precedents and given feature space partition determines the weights characterizing the term and feature usefulness. It characterizes the individual absolute and relative informativity of instances relative to the centers and the boundaries of feature intervals based on the weight values. This allows to automate the sample analysis and its division into subsamples, and, as a consequence, to reduce the training data dimensionality. This in turn reduces the time and provides an acceptable accuracy of neural model training. The software implementing proposed indicators is developed. The experiments to study their properties are conducted. The experimental results allow to recommend the proposed indicators for use in practice, as well as to determine effective conditions for the application of the proposed indicators.
References
Engelbrecht A. Computational intelligence: an introduction / A. Engelbrecht. – Sidney : John Wiley & Sons, 2007. – 597 p. DOI: 10.1002/9780470512517 2. Jankowski N. Comparison of instance selection algorithms I. Algorithms survey / N. Jankowski, M. Grochowski // Artificial Intelligence and Soft Computing : 7th International Conference ICAISC-2004, Zakopane, 7–11 June, 2004 : proceedings. – Berlin : Springer, 2004. – P. 598–603. – (Lecture Notes in Computer Science, Vol. 3070). DOI: 10.1007/978-3-540-24844-6_90 3. Reinartz T. A unifying view on instance selection / T. Reinartz // Data Mining and Knowledge Discovery. – 2002. – № 6. – P. 191–210. DOI: 10.1023/A:1014047731786 4. Hart P. E. The condensed nearest neighbor rule / P. E. Hart // IEEE Transactions on Information Theory. – 1968. – Vol. 14. – P. 515–516. DOI: 10.1109/TIT.1968.1054155 5. Aha D. W. Instance-based learning algorithms / D. W. Aha, D. Kibler, M. K. Albert // Machine Learning. – 1991. – № 6. – P. 37–66. DOI: 10.1023/A:1022689900470 6. Gates G. The reduced nearest neighbor rule / G. Gates // IEEE Transactions on Information Theory. – 1972, Vol. 18, № 3. – P. 431–433. DOI: 10.1109/TIT.1972.1054809 7. Kibbler D. Learning representative exemplars of concepts: an initial case of study / D. Kibbler, D. W. Aha // Machine Learning 4th International Workshop, Irvine, 22–25 June 1987 : proceedings. – Burlington : Morgan Kaufmann, 1987. – P. 24– 30. DOI: 10.1016/b978-0-934613-41-5.50006-4 8. Wilson D. L. Asymptotic properties of nearest neighbor rules using edited data / D. L. Wilson // IEEE Transactions on Systems, Man, Cybernetics. – 1972. – Vol. 2, № 3. – P. 408– 421. DOI: 10.1109/TSMC.1972.4309137 9. Tomek I. An experiment with the edited nearest-neighbor rule / I. Tomek // IEEE Transactions on Systems, Man, and Cybernetics. – 1976. – Vol. 6. – P. 448–452. DOI: 10.1109/ TSMC.1976.4309523 10. Jankowski N. Data regularization / N. Jankowski // Neural Networks and Soft Computing : Fifth Conference, Zakopane, 6–10 June 2000 : proceedings. – Czкstochowa : Polish Neural Networks Society, 2000. – P. 209–214.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 S. A. Subbotin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.