PARALLEL IMMUNE ALGORITHM OF SHORT-TERM FORECASTING BASED ON MODEL OF CLONAL SELECTION
DOI:
https://doi.org/10.15588/1607-3274-2014-2-11Keywords:
forecasting, time series, artificial immune systems, clonal selection model, antibody, antigen, affinity, cloning, mutation.Abstract
The paper studies ways of parallelization of hybrid immune algorithm of short-term forecasting of time series built on the basis of clonal selection model that uses case-based reasoning and the simplest methods of forecasting. There has been analysis performed of two variants of parallelization having different procedure of messaging between the computational nodes. To implement proposed algorithm used MPI.NET technology for messaging systems. To optimize individual computational nodes operations, TPL library for shared memory systems is used. The work presents results of experimental investigations demonstrating efficiency of the proposed approach.
References
Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов / Ю. П. Лукашин. – М. : Финансы и статистика, 2003. – 416 с. 2. Кораблев Н. М. Применение модели клонального отбора, использующей вывод по прецедентам, для прогнозирования временных рядов / Н. М. Кораблев, Г. С. Иващенко // Бионика интеллекта. – № 1(80). – С. 108–111. 3. Dasgupta D. Artificial Immune Systems and Their Applications / D. Dasgupta. – Springer-Verlag, 1999. – 306 p. DOI: 10.1007/978-3-642-59901-9 4. Бидюк П. И. Алгоритм клонального отбора для прогнозирования нестационарных динамических систем / П. И. Бидюк, В. И. Литвиненко, И. В. Баклан, А. А. Фефелов // Искусственный интеллект. – 2004. – № 4. – С. 89–99. 5. Кораблев Н. М. Применение искусственных иммунных сетей для прогнозирования временных рядов / Н. М. Кораблев, Г. С. Иващенко // Системи обробки інформації. – Харьков. – 2012. – № 9(107). – С. 42–45. 6. Кораблев Н. М. Применение модели клонального отбора для прогнозирования временных рядов, имеющих пропущенные значения / Н. М. Кораблев, Г. С. Иващенко // Электротехнические и компьютерные системы. – Одесса. – 2014. – № 13(89). – С. 170–177. 7. Воеводин В. В. Параллельные вычисления. / В. В. Воево- дин, Вл.В. Воеводин – СПб.: БХВ-Петербург, 2002. – 475 с. 8. Timothy G. M. Patterns for Parallel Programming / G. M. Timothy, A. S. Beverly, L. M. Berna. – Addison- Wesley, 2004. – 384 p. DOI: 10.1145/1953611.1953620 9. Монахов О. Г. Параллельный генетический алгоритм для оптимизации торговых стратегий / О. Г. Монахов // Сибирский журнал вычислительной математики. – 2008. – Т. 11, № 4. – С. 423–432. 10. Makridakis S. The M-3 Competition: Results, Conclusions and Implications / S. Makridakis, M. Hibon // International of Forecasting. – Amsterdam : Elsevier, 2000. – № 16. – P. 451–476. DOI: 10.1016/S0169-2070(00)00057-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 N. M. Korablev, G. S. Ivaschenko
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.