IMAGE SEQUENCES TEXTURE ANALYSIS BASED ON VECTOR QUANTIZATION

S. I. Bogucharskiy, S. V. Mashtalir

Abstract


The approach for the image sequence (videodata) analysis is proposed. For this purpose, the matrix analogs of existing neural network approaches is developed. This aallows to takes into account the spatial relationships of multimedia information, and to reduce the time of information processing through the introduction of a new neural network matrix training procedures. The texture isselected as a basic characteristic for original data partition, which, in turn, improves the clustering accuracy.


Keywords


image, texture, clustering, matrix algorithm, neural networks.

References


Derin H. Modeling and segmentation of noisy and textured images using Gibbs random fields / H. Derin, H. Elliot // IEEE Trans. on Pattern Analysis and Machine Intelligence. – 1987. – Vol. 9. – P. 39–55. 2. Varma M. A statistical approach to texture classification from single images / M. Varma, A. Zisserman // Int. J. of Computer Vision. – 2005. – Vol. 62. – P. 61–81. 3. Liu L. Texture classification from random features / L. Liu, P. Fieguth // IEEE Trans. on Pattern Analysis and Machine Intelligence. – 2012. – No. 34. – P. 574–586. 4. Chen Y. Q. Statistical geometrical features for texture classification / Y. Q. Chen, M. S. Nixon, D. W. Thomas // Pattern Recognition. – 1995. – No. 28. – P. 537–552. 5. Cross G. R., Jain A.K. Markov random field texture models / G. R. Cross, A. K. Jain // IEEE Trans. on Pattern Analysis and Machine Intelligence. – 1983. – No. 5. – P. 25–39. 6. Chellapa R. Classification of textures using Gaussian – Markov random fields / R. Chellapa, S. Chatterjee // IEEE Trans. on Acoust., Speech, Signal Processing. – 1985. – No. 33. – P. 959–963. 7. Ghahramani Z. An introduction to hidden Marka models and Bayesian networks / Z. Ghahramani // Int. J. of Pattern Recognition and Artificial Intelligence. – 2001. – No. 15. – P. 9–42. 8. Beal M. J. The infinite hidden Markov model / M. J. Beal, Z. Ghahramani, C. E. Rasmussen // Neural Information Processing Systems. – 2001. – P. 577–584. 9. Neural Networks for Signal Processing / ed. B. Kosko. – New Jersey : Prentice Hall, 1992. – 399 p. 10. Rojas R. Neural Network: A Systematic Introduction / R. Rojas. – Berlin : Springer-Verlag. 1996. – 502 p. 11. Хайкин С. Нейронные сети: Полный курс / С. Хайкин. – М. : Издательский дом Вильямс, 2006. – 1104 с. 12. Raveane W. Texture classification with neural networks / W. Raveane, M.A.G. Arrieta ; eds. Omatu et. al. // Distributed Computing&Artificial Intelligence. – Berlin, Springer, 2013. – P. 305–332. 13. Caldas-Pinto J. R. Self-tuning filters and predictors for twodimensional systems / J. R. Caldas-Pinto, P. E. Wellstead // Int. J. of Control. – 1985. – Vol. 42, No. 2. – P. 457–505. 14. Wellstead P. E. Two-dimensional adaptive prediction, smoothing and filtering / P. E. Wellstead, G. R. Wagner, J. R. Caldas-Pinto // IEE Proc. – 1987. – No. 3. – P. 253–267. 15. Bodyanskiy Ye. Discrete adaptive identification and extrapolation of two-dimensional fields / Ye. Bodyanskiy, I. Pliss, V. Timofeev // Pattern Recognition and Image Analysis. – 1995. – No. 3. – P. 410–416. 16. Kohonen T. Self-organizing maps / T. Kohonen. – Berlin : Springer Verlag, 1995. – 362 p.


GOST Style Citations






DOI: https://doi.org/10.15588/1607-3274-2014-2-14



Copyright (c) 2015 S. I. Bogucharskiy, S. V. Mashtalir

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.
E-mail: rvv@zntu.edu.ua

The reference to the journal is obligatory in the cases of complete or partial use of its materials.