ARCHITECTURE AND ALGORITHMS OF NEURAL NETWORKS HAMMING AND HEBB, CAPABLE LEARN AND IDENTIFY NEW INFORMATION

Authors

  • V. D. Dmitrienko National Technical University «Kharkiv Polytechnic Institute», Ukraine, Ukraine
  • A. Yu. Zakovorotniy National Technical University «Kharkiv Polytechnic Institute», Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2014-2-15

Keywords:

recognition and classification of images, stable and plastic neural networks, Hamming neural network, Hebb neural network, adaptive resonance theory.

Abstract

The problem of the classical discrete neural networks Hamming and Hebb lossless previously stored information additional training. The object of research is the process of recognition and classification of images on systems that are based on artificial neural networks. The subject of research is the architecture and algorithms of artificial neural networks. Objective: To develop a stable and plastic neural networks Hamming and Hebb. The architecture and algorithms of discrete stable and plastic neural networks Hamming and Hebb, which not only can be trained during functioning, but also to recognize the new information. New networks can be an alternative to discrete
neural network adaptive resonance theory. The developed approach for training can be generalized to other neural networks. Experimental investigations of the functioning of the developed algorithms of artificial neural networks. The experimental results confirm the validity of the proposed approach.

References

Suzuki K. Artificial Neural Networks: Architectures and Applications / K. Suzuki. – Publisher: InTech, 2013. – 256 p. 2. Bianchini M. Handbook on Neural Information Processing (Intelligent Systems Reference Library) / M. Bianchini. – Publisher : Springer, 2013. – 499 p. 3. Cirrincione M. Power Converters and AC Electrical Drives with Linear Neural Networks (Energy, Power Electronics, and Machines) / M. Cirrincione, M. Pucci, G. Vitale. – Publisher : CRC Press, 2012. – 631 p. 4. Галушкин А. И. Нейронные сети. Основы теории / А. И. Галушкин. – М. : Горячая линия. – Телеком, 2012. – 496 с. 5. Капля В. И. Системы искусственного интеллекта : учебное пособие. – Волгоград : ИУНЛ ВолгГТУ. – 2011. – 97 с. 6. Russell S. Artificial Intelligence: A Modern Approach, Third Edition / S. Russell, P. Norvig. – Publisher : Prentice Hall, 2010. – 1152 p. 7. Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Федоров. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. – 352 с. 8. Carpenter G. A. Massively parallel architecture for selforganising neural pattern recognition machne / G. A. Carpenter, S. A. Grossberg // Computing, Vision, Graphics and Image Processing. – 1987. – Vol. 37. – P. 54–115. 9. Grossberg S. Competitive learning: From interactive activation to adaptive resonance / S. Grossberg // Cognitive Science. – 1987. – Vol. 11. – P. 23–63. 10. Fausett L. Fundamentals of Neural Networks. Architectures, Algorithms and Applications / L. Fausett. – New Jersey : Prentice Hall Int., Inc., 1994. – 461 p. 11. Дмитриенко В. Д. Нейросетевое устройство направленных ассоциаций / В. Д. Дмитриенко, А. Ю. Заковоротный, Хавина И. П. // Научные ведомости. Серия : История, политология, экономика, информатика. – Белгород : БГУ, 2010. – № 7(78), Вып. 14/1. – С. 110–119. 12. Дмитриенко В. Д. Ассоциативная нейронная сеть АРТ / В. Д. Дмитриенко, А. Ю. Заковоротный, В. А. Бречко // Сборник трудов Международной молодежной конференции «Прикладная математика, управление и информатика». – Белгород : ИД «Белгород», 2012. – Т. 1. – С. 115–118

Published

2014-10-17

How to Cite

Dmitrienko, V. D., & Zakovorotniy, A. Y. (2014). ARCHITECTURE AND ALGORITHMS OF NEURAL NETWORKS HAMMING AND HEBB, CAPABLE LEARN AND IDENTIFY NEW INFORMATION. Radio Electronics, Computer Science, Control, (2). https://doi.org/10.15588/1607-3274-2014-2-15

Issue

Section

Neuroinformatics and intelligent systems