ARCHITECTURE AND ALGORITHMS OF NEURAL NETWORKS HAMMING AND HEBB, CAPABLE LEARN AND IDENTIFY NEW INFORMATION
DOI:
https://doi.org/10.15588/1607-3274-2014-2-15Keywords:
recognition and classification of images, stable and plastic neural networks, Hamming neural network, Hebb neural network, adaptive resonance theory.Abstract
The problem of the classical discrete neural networks Hamming and Hebb lossless previously stored information additional training. The object of research is the process of recognition and classification of images on systems that are based on artificial neural networks. The subject of research is the architecture and algorithms of artificial neural networks. Objective: To develop a stable and plastic neural networks Hamming and Hebb. The architecture and algorithms of discrete stable and plastic neural networks Hamming and Hebb, which not only can be trained during functioning, but also to recognize the new information. New networks can be an alternative to discrete
neural network adaptive resonance theory. The developed approach for training can be generalized to other neural networks. Experimental investigations of the functioning of the developed algorithms of artificial neural networks. The experimental results confirm the validity of the proposed approach.
References
Suzuki K. Artificial Neural Networks: Architectures and Applications / K. Suzuki. – Publisher: InTech, 2013. – 256 p. 2. Bianchini M. Handbook on Neural Information Processing (Intelligent Systems Reference Library) / M. Bianchini. – Publisher : Springer, 2013. – 499 p. 3. Cirrincione M. Power Converters and AC Electrical Drives with Linear Neural Networks (Energy, Power Electronics, and Machines) / M. Cirrincione, M. Pucci, G. Vitale. – Publisher : CRC Press, 2012. – 631 p. 4. Галушкин А. И. Нейронные сети. Основы теории / А. И. Галушкин. – М. : Горячая линия. – Телеком, 2012. – 496 с. 5. Капля В. И. Системы искусственного интеллекта : учебное пособие. – Волгоград : ИУНЛ ВолгГТУ. – 2011. – 97 с. 6. Russell S. Artificial Intelligence: A Modern Approach, Third Edition / S. Russell, P. Norvig. – Publisher : Prentice Hall, 2010. – 1152 p. 7. Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Федоров. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. – 352 с. 8. Carpenter G. A. Massively parallel architecture for selforganising neural pattern recognition machne / G. A. Carpenter, S. A. Grossberg // Computing, Vision, Graphics and Image Processing. – 1987. – Vol. 37. – P. 54–115. 9. Grossberg S. Competitive learning: From interactive activation to adaptive resonance / S. Grossberg // Cognitive Science. – 1987. – Vol. 11. – P. 23–63. 10. Fausett L. Fundamentals of Neural Networks. Architectures, Algorithms and Applications / L. Fausett. – New Jersey : Prentice Hall Int., Inc., 1994. – 461 p. 11. Дмитриенко В. Д. Нейросетевое устройство направленных ассоциаций / В. Д. Дмитриенко, А. Ю. Заковоротный, Хавина И. П. // Научные ведомости. Серия : История, политология, экономика, информатика. – Белгород : БГУ, 2010. – № 7(78), Вып. 14/1. – С. 110–119. 12. Дмитриенко В. Д. Ассоциативная нейронная сеть АРТ / В. Д. Дмитриенко, А. Ю. Заковоротный, В. А. Бречко // Сборник трудов Международной молодежной конференции «Прикладная математика, управление и информатика». – Белгород : ИД «Белгород», 2012. – Т. 1. – С. 115–118
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 V. D. Dmitrienko, A. Yu. Zakovorotniy
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.