INFORMATION-EXTREME ALGORITHM FOR SYSTEM DIAGNOSTICS EMOTIONAL AND MENTAL PERSON’S STATE LEARNING
DOI:
https://doi.org/10.15588/1607-3274-2014-2-21Keywords:
information-extreme intelligent technology, computer diagnostic system, psychodiagnostics, learning, the criterion of the functional efficiency.Abstract
A method of the emotional and mental person’s state recognition using facial image is considered. The fragments with eye and nose areas of the image are prompted for additional information obtaining. A forming of the input mathematical description of pattern recognition system by analyzing the left hemisphere and right hemisphere images of the human face is proposed. The preliminary process of forming training matrix by image brightness for a stable emotional and mental person’s state uses the whole images as well as corresponding fragments. Machine learning in the framework of information-extreme intellectual technologies is based on maximizing the information capacity of the recognition system. A criterion for the functional efficiency of machine learning uses a modified information measure Kullback as a functional of the accuracy characteristics of the two alternative solutions. An information-extreme algorithm for optimization geometrical parameters of recovering in radial basis of the feature space during the learning process hyperspherical
containers of recognition classes is developed by the categorical model of mapping involved in the learning process sets. Physical modeling results proved that the fragments of facial image are quite informative for the emotional and mental person’s state recognition.
References
Шелехов І. В. Оптимізація параметрів навчання комп’ютеризованої системи діагностування емоційно-психічного стану людини / І. В. Шелехов, Д. В. Прилепа // Радіоелектронні і комп’ютерні системи. – 2014. – №1(65). – С. 161–167. 2. Ануашвили А. Н. Объективная психология на основе волновой модели мозга / А.Н. Ануашвили. – М. : Экон-Информ, 2008. – 292 с. 3. Анисимов Б. В. Распознавание и цифровая обработка изображений / Б. В. Анисимов, В. Д. Курганов, В. К. Злобин. – М. : Высшая школа, 1983. – 256 с. 4. Люггер Дж. Ф. Искусственный интеллект. Стратегии и методы решения сложных проблем / Дж. Ф. Люггер. – М. : Вильямс, 2003. – 864 с. 5. Довбиш А. С. Основи проектування інтелектуальних систем : навчальний посібник / А. С. Довбиш. – Суми : СумДУ, 2009. – 171 с. 6. Шелехов І. В. Комп’ютеризована системи діагностування емоційно-психічного стану людини за фрагментами зображення обличчя / І. В. Шелехов, Д. В. Прилепа // Advanced information systems and technologies : матеріали третьої міжнародної науково-практичної конференції (Суми, 14–16 травня 2014 р.), AIST. – 2014. – С. 118–119. 7. Meneghini F. Clinical Facial Analysis Elements, Principles, and Techniques / F. Meneghini, P. Biondi. – Berlin : Springer, 2012. – 219 p. 8. George R. M. Facial Geometry: Graphic Facial Analysis for Forensic Artists / R. M. George. – Charles C Thomas Publisher, 2007. – 82 p. 9. Petta P. Emotion-Oriented Systems. The Humaine Handbook / P. Petta, C. Pelachaud, R. Cowie. – Berlin : Springer, 2011. – 816 p. 10. Andr E. Experimental methodology in emotion-oriented computing / E. André // IEEE Pervasive Computing. – 2011. – Vol. 10 (3). – P. 54–57. 11. Colmenarez A. J. Facial Analysis from Continuous Video with Applications to Human-Computer Interface / A. J. Colmenarez, Z. Xiong, T-S. Huang. – Berlin : Springer Science, 2004. – 134 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 A. S. Dovbysh, І. V. Shelehov, D. V. Prylepa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.