Yu. I. Dorofieiev, L. M. Lyubchyk


An approach to solving the problem of stabilizing robust water inventory control synthesis for drinking water distribution system of a large city is proposed. The mathematical model of drinking water distribution system is presented in the form of a nonlinear discrete state-space model with time-delay. The technique of model matrix factorization describing the influence of nonlinear terms, which allowed to introduce structural constraints in the form of linear matrix inequalities, is proposed. To suppress the disturbances influence simulating unknown but bounded external demand, while ensuring robust stability of the closed-loop system, is used the invariant ellipsoids technique, which allowed to formulate the control problem in terms of linear matrix inequalities. As a result the control synthesis problem is reduced to a sequence of one-dimensional convex optimization problems and semi-definite programming. As an example, a fragment of the Kharkiv drinking water distribution system is consider.


drinking water distribution system, water inventory control, invariant ellipsoids method, Lyapunov’s direct method, linear matrix inequality, semi-definite programming.


Петросов В. А. Управление региональными системами водоснабжения / В. А. Петросов. – Харьков : Основа, 1999. – 320 с. 2. Brdys M. A. Operational control of water systems: structures, algorithms, and applications / M. A. Brdys, B. Ulanicki. – London: Prentice Hall, 1994. – 364 p. 3. Дорофеев Ю. И. Построение математических моделей управляемых сетей поставок с учетом запаздываний потоков / Ю. И. Дорофеев, А. А. Никульченко // Системні дослідження та інформаційні технології. – 2013. – № 1. – С. 16–27. 4. Blanchini F. Feedback control of production-distribution systems with unknown demand and delays / F. Blanchini, R. Pesenti, F. Rinaldi and W. Ukovich // IEEE Transaction on Robotics and Automation, Special Issue on Automation of Manufacturing Systems. – 2000. – Vol. RA-16. – No. 3. – P. 313–317. 5. Stipanovic D. M. Robust stability and stabilization of discrete-time non-linear systems: the LMI approach / D. M. Stipanovic, D. D. Siljak // International Journal of Control. – 2001. – Vol. 74. – P. 873–979. 6. Bemporad A. Robust model predictive control: a survey / A. Bemporad, M. Morari // Lecture Notes in Control and Information Sciences. – 1999. – Vol. 245. – P. 207–226. 7. Bertsekas D. P. Recursive state estimation for a set-membership description of uncertainty / D. P. Bertsekas, I. Rhodes // IEEE Trans. Automat. Control. – 1971. – Vol. 16. – P. 117–128. 8. Blanchini F. Set theoretic methods in control / F. Blanchini, S. Miani. – Boston : Birkhauser, 2007. – 504 p. 9. Хлебников М. В. Оптимизация линейных систем при ог- раниченных внешних возмущениях (техника инвариант- ных эллипсоидов) / М. В. Хлебников, Б. Т. Поляк, В. М. Кунцевич // Автоматика и телемеханика. – 2011. – № 11. – С. 9–59. 10. Linear matrix inequalities in system and control theory / [S. Boyd, El. Ghaoui, E. Feron, V. Balakrishnan]. – Philadelphia: SIAM, 1994. – 187 p.

GOST Style Citations

Copyright (c) 2015 Yu. I. Dorofieiev, L. M. Lyubchyk

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
National University "Zaporizhzhia Polytechnic", 
Zhukovskogo street, 64, Zaporizhzhia, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.

The reference to the journal is obligatory in the cases of complete or partial use of its materials.