EGG SIGNAL ANALYSIS BASED ON PSEUDO WIGNER-VILLE DISTRIBUTION
DOI:
https://doi.org/10.15588/1607-3274-2015-1-4Keywords:
EEG signal, time-frequency analysis, short-time Fourier transform, Wigner-Ville distribution.Abstract
The problem of selection of electroencephalographic rhythms and epileptiform activity search was investigated. The object of study is theprocess of extracting the EEG phenomena. The subject of study is time-frequency analysis methods of EEG signals. The purpose of the work is to improve the accuracy of diagnosis of psychological, psycho-somatic, neurotic and cognitive disorders. A review of electroencephalographic process and EEG artifacts was given. Types of EEG rhythms and phenomena, that have specific timefrequency characteristics, were considered. A method for electroencephalographic phenomena selection that is based on the extreme values analysis of spectral density function of smoothed pseudo Wigner-Ville distribution was proposed. Proposed method was compared with the short-time Fourier transform. As a quality criteria for analyzed methods was chosen the time-frequency resolution of obtained spectral density functions. Computational experiments on EEG epochs set that contains high-frequency phenomena were made. Software that automates EEG
analysis process and builds results visualization was developed.
The experimental results show the advantages of this approach in the time-frequency resolution compared with short-time Fourier transform, and allow to recommend the proposed method for practical use for EEG rhythms separation and high-frequency phenomena selection.
References
Collura F. T. History and Evolution of Electroencephalographic Instruments and Techniques / F. T. Collura // Journal of Clinical Neurophysiology. – 1993. – № 10 (4).– P. 476–504. 2. Sanei S. EEG signal processing / S. Sanei, J. Chambers. – Chichester : John Wiley & Sons Ltd, 2007. – 312 p. 3. Juozapavicius A. EEG analysis – automatic spike detection / A. Juozapavicius, G. Bacevicius, D. Bugelskis, R. Samaitiene // Nonlinear Analysis : Modelling and Control. – 2011. – Vol. 16, № 4. – P. 375–386. 4. Tzallas A. T. Epileptic Seizure Detection in EEGs Using Time-Frequency Analysis / A. T. Tzallas, M. G. Tsipouras, D. I. Fotiadis // IEEE Transactions On Information Technology In Biomedicine. – 2009. – Vol. 13, № 5. – P. 703–710. 5. Costaab J. Sleep Spindles Detection : a Mixed Method using STFT and WMSD / J. Costaab, M. Ortigueirab, A. Batistab, T. Paiva // International Journal of Bioelectromagnetism. – 2012. – Vol. 14, № 4. – P. 229–233. 6. Вишнивецкий О. В. Вигнер-анализ в задачах космической радиофизики / О. В. Вишнивецкий, О. В. Лазоренко // Вісник Харківського національного університету. Серія «Радіофізи- ка та електроніка». – 2010. – № 927, Вип. 16. – С. 89–95. 7. Лупов С. Ю. Модификация преобразования Вигнера-Виля для анализа интерферометрических данных газодинамических процессов / С. Ю. Лупов, В. И. Кривошеев // Вестник Нижегородского университета. – 2011. – № 5 (3). – С. 95–103. 8. Вишневецкий О. В. Анализ нелинейных волновых процессов при помощи преобразования Вигнера / О. В. Вишневецкий, О. В. Лазоренко, Л. Ф. Черногор // Радиофизика и радиоастрономия. – 2007. – T. 12, № 3. – С. 295–310. 9. Mohseni H. R. Automatic Detection of Epileptic Seizure using Time-Frequency Distributions / H. R. Mohseni, A. Maghsoudi, M. H. Kadbi, J. Hashemi, A. Ashourvan // Conference Paper : Advances in Medical, Signal and Information Processing. – Tehran : Sharif University of Technology, 2006. – Access mode : http://www. r e s e a r c h g a t e . n e t / p u b l i c a t i o n / 4 2 5 1 9 6 0 _Automatc_Detection_of_Epileptic_Seizure_using_TimeFrequency_Distributions 10. Guerrero-Mosquera C. New feature extraction approach for epileptic EEG signal detection using time-frequency distributions / C. Guerrero-Mosquera, A. Malanda Trigueros, J. I. Franco, Á. Navia-Vázquez // Medical & Biological Engineering & Computing. – April 2010. – Vol. 48 (4). – P. 321–330.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 O. O. Savkov, V. V. Moroz
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.