DOI: https://doi.org/10.15588/1607-3274-2015-3-1

### ON JUSTIFICATION OF A MATHEMATICAL MODEL FOR A PLANAR JUNCTION OF THREE WAVEGUIDES. PART I. E-PLANE PROBLEM

L. M. Onufriyenko, V. P. Chumachenko, Ya. V. Chumachenko

#### Abstract

In the paper, a mathematical model of an E-plane junction of three waveguides has been presented and justified. The coupling cavity of
the waveguide transformer in question has an arbitrary triangular shape. The problem of scattering of waveguide modes is formulated in the
form of a boundary-value problem for the Helmholtz equation with Neumann boundary conditions on the periphery of the unit, radiation
conductions in the waveguides and with the edge condition. The model is based on the specific trigonometric-series expansions of the field in
the triangular connecting region, which are constructed using the domain-product technique. It is suggested to consider the blocks of the matrix of the infinite system of linear equations, which arises in the course of solving the problem, in the capacity of operators in the sequence space of absolutely convergent series l1. It has been demonstrated that each such operator, describing the interaction of sides of the triangle, can be represented as a sum of a completely continuous operator and the contraction operator. It has been shown that in the space of sequences 1 1 1 (3) l1 = l ⊕l ⊕l the investigated system presents a functional equation with the Fredholm operator and that for almost all values of the frequency parameter the resulting equation is uniquely solvable in (3) l1 by means of the truncation method convergent in the norm of this space.

#### Keywords

waveguide discontinuities, domain-product technique, matrix-operator equations.

PDF (Українська)

#### References

Миттра Р. Аналитические методы теории волноводов / Р. Миттра, С. Ли. – М. : Мир, 1974. – 328 с. 2. Arndt F. Automated design of waveguide components using hybrid mode-matching/numerical EM building-blocks in optimizationoriented CAD frameworks – State-of-the-art and recent advances / F. Arndt, R. Beyer, J. M. Reiter, T. Sieverding and T. Wolf // IEEE Transactions on Microwave Theory and Techniques. – 1997. – Vol. 45, No. 5. – P. 747–760. 3. Шестопалов В. П. Матричные уравнения типа свертки в теории дифракции / В. П. Шестопалов, А. А. Кириленко, С. А. Масалов. – Киев : Наукова думка, 1984.– 296 с. 4. Шестопалов В. П. Резонансное рассеяние волн. Т. 2. Волноводные неоднородности / В. П. Шестопалов, А. А. Кириленко, Л. А. Рудь. – Киев : Наукова думка, 1986. – 216 с. 5. Ващенко В. В. О выборе представления поля для базовой треугольной области в задачах моделирования H-плоскостных волноводных узлов / В. В. Ващенко, В. П. Чумаченко // Радіоелектроніка, інформатика, управління. – 2010. – № 1. – С. 5–9. 6. Chumachenko V. P. A GSM analysis of E-pane waveguide junctions filled with piecewise homogeneous dielectric / V. P. Chumachenko, V. V. Vashchenko // International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. – 2012. – Vol. 25, No. 2. – P. 163–174. 7. Chumachenko V. P. Efficient field representation for polygonal region / V. P. Chumachenko // Electronics Letters. – 2001. – Vol. 37, No. 19. – P. 1164–1165. 8. Chumachenko V.P. Properties of some matrix operators appearing in the theory of planar waveguide junctions / V. P. Chumachenko / / Telecommunications and Radio Engineering. – 2013. – Vol. 72, No. 6. – P. 469–484. 9. Левин Л. Теория волноводов / Л. Левин. – М. : Радио и связь, 1981. – 312 с. 10. Шестопалов В. П. Спектральная теория и возбуждение открытых структур / В. П. Шестопалов. – Киев : Наукова думка, 1987. – 288 с. 11. Chumachenko V. P. On linear independence of some function systems appearing in the theory of plane wave fields / V. P. Chumachenko / / Telecommunications and Radio Engineering. – 2015. – Vol. 74, No. 4. – P. 281–296. 12. Бари Н. К. Тригонометрические ряды / Н. К. Бари. – М. : Физматгиз, 1961. – 936 с. 13. Хатсон В. Приложения функционального анализа и теории операторов / В. Хатсон, Дж. Пим. – М. : Мир, 1983. – 432 с. 14. Грибанов Ю. И. Координатные пространства и бесконечные системы линейных уравнений. III / Ю. И. Грибанов // Изв. вузов. Математика. – 1963. – № 3(34). – С. 27–39. 15. Градштейн И. С. Таблицы интегралов, сумм, рядов и произведений / И. С. Градштейн, И. М. Рыжик. – М. : Наука, 1971. – 1108 с. 16. Прудников А. П. Интегралы и ряды. Т. 1. Элементарные функции / А. П. Прудников, Ю. А. Брычков, О. И. Маричев. – М. : Физматлит, 2002. – 632 с. 17. Полиа Г. Задачи и теоремы из анализа.Ч. 1 / Г. Полиа, Г. Сеге. – М. : Наука, 1978.– 392 с. 18. Треногин В. А. Функциональный анализ / В.А. Треногин. – М. : Наука, 1980. – 496 с. 19. Габдулхаев Б. Г. Теория приближенных методов решения операторных уравнений / Б. Г. Габдулхаев. – Казань : Казанский государственный университет, 2006. – 112 с.

#### GOST Style Citations

Copyright (c) 2015 L. M. Onufriyenko, V. P. Chumachenko, Ya. V. Chumachenko