THE INTERVAL DERIVATIVE AND INTERVAL-DIFFERENTIAL CALCULUS
DOI:
https://doi.org/10.15588/1607-3274-2015-3-3Keywords:
interval, interval function, interval derivative, interval-differential calculus.Abstract
The problem of the possible generalization of the classical differential calculus for functions with interval uncertainty of parameters isconsidered. In this regard, various types of uncertainty of function parameters and possible mathematical approaches to study of such functions are viewed. A detailed explanation of means of interval mathematics applied to study of functions with interval uncertainty of parameters is given. The concept of interval derivative is introduced by analogy with the classical notion of derivative of fully defined functions by passing to the limit. The theorem of existence of interval derivative is proved. Also we prove a theorem on representation of interval derivative through the original function. The interval derivatives of higher order are introduced and the theorem of existing of such derivatives if proved. Also we prove the theorem that allows us to represent derivatives of any high order through the original function. We derive an explicit expression for the interval derivative of any of order n as the interval the lower and upper limit of which are expressed in terms of boundaries of the original interval function. An example of use of interval derivative in the economy.
References
Гнеденко Б. В. Курс теории вероятностей / Б. В. Гнеденко. – М. : Наука, 2004. – 451 с. 2. Заде Л. А. Понятие лингвистической переменной и его применение к принятию приближенных решений / Л. А. Заде. – М. : Мир, 1976. – 165 с. 3. Алефельд Г. Введение в интервальные вычисления / Г. Алефельд, Ю. Херцбергер. – М.: Мир, 1987. – 360 с. 4. Левин В. И. Интервальные методы оптимизации систем в условиях неопределенности / В. И. Левин. – Пенза : Изд-во Пензенского технологического ин-та, 1999. – 64 c. 5. Левин В. И. Оптимизация в условиях интервальной неопределенности. Метод детерминизации / В. И. Левин // Автоматика и вычислительная техника. – 2012. – № 4. – C. 157–163. 6. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 1 / Фихтенгольц Г. М. – М. : Наука, 2005. – 680 c. 7. Кремер Н. Ш. Высшая математика для экономистов / Н. Ш. Кремер [и др]. – М. : ЮНИТИ, 2001. – 471 c. 8. Вощинин А. П. Оптимизация в условиях неопределенности / А. П. Вощинин, Г. Р. Сотиров. – М. : МЭИ, 1989. – 224 с. 9. Ащепков Л. Т. Универсальные решения интервальных задач оптимизации и управления / Л. Т. Ащепков, Д. В. Давыдов. – М. : Наука, 2006. – 285 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 V. I. Levin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.