CHARACTER RECOGNITION ALGORITHM ON THE BASE OF COMPETITIVE CELLULAR AUTOMATA

Authors

  • V. V. Zhikharevich Chernivtsi Yu. Fed’kovych National University, Chernivtsi, Ukraine
  • I. V. Myroniv Chernivtsi Yu. Fed’kovych National University, Chernivtsi, Ukraine
  • S. E. Ostapov Chernivtsi Yu. Fed’kovych National University, Chernivtsi, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2015-4-6

Keywords:

text recognition, character recognition, cellular automaton, Moore probabilistic automaton.

Abstract

This paper presents a new method for character recognition that is based on the concept of competing cellular automata. A new type of
cellular automata, which move trajectory coincides with the character shape is represents. The advantage of this method is the insensitivity
to the character size, lines thickness and proportion of fragments, distortion and partial overlapping symbols except the formation of joint
lines. To optimize the recognition efficiency and speed offered the cellular automata competitive process; developed its algorithms and
methods of interaction. To implement the proposed algorithms the modeling program was created. This software allowed to evaluate the
effectiveness of cellular automata techniques and conduct experiments on English alphabet character recognition. It was demonstrated the
successful recognition partly distorted characters and such imposed without forming joint lines. On the basis of these experiments authors
concluded the prospects of using the proposed method in handwriting recognition. To create a real system it’s need to develop subsystem of
interaction with scanning equipment, text segmentation principles, clearing it from the noise and automatic creation of cellular fields and
output the recognition results.

References

Шапиро Л. Компьютерное зрение / Л. Шапиро, Дж. Стокман. – М. : Бином. Лаборатория знаний, 2006. – 752 с. 2. Forsyth D. A. Computer Vision: A Modern Approach / D. A. Forsyth, J. Ponce. – Pearson Education, Inc., 2011. – 792 p. 3. Wolfram S. A New Kind of Science / S. Wolfram. – Wolfram Media, Inc., 2002. – 1197 p. 4. Zhikharevich V. V. Development and research of algorithm of characters recognition of text on the basis of competitive cellular automats // V. V. Zhikharevich, I. V. Myroniv, S. E. Ostapov //Collection of Scientific papers of IInd Int. Conf. «Cluster Computing – 2013», Lviv, 2013, June 3–5. – Р. 149–156. 5. von Neumann J. Theory of Self Reproducing Automata / J. von Neumann. – University of Illinois Press, Champaign, 1966. – 388 р. 6. Жихаревич В. В. Моделирование процессов самоорганизации и эволюции систем методом непрерывных асинхронних клеточных автоматов / В. В. Жихаревич, С. Э. Остапов // Компьютинг. – 2009. – Т. 8, № 3. – С. 61–71. 7. Жихаревич В. В. Построение и исследование непрерывной клеточно-автоматной модели процессов теплопроводности с фазовими переходами первого рода / [В. В. Жихаревич, Л. М. Шумиляк, Л. Т. Струтинская и др.] // Компьютерные исследования и моделирование, 2013. – Т. 5, № 2. – С. 141–152. 8. Smith R. A. Real-Time Language Recognition by One-Dimensional Cellular Automata / R.A. Smith // Journal of Computer and System Sciences, 1972 – V.6, No 3. – Р. 233–253. 9. Buchholz T. Real-Time Language Recognition by Alternating Cellular Automata [Electronic resource] / T. Buchholz, A. Klein, M. Kutrib // Theoretical Computer Science, 2000. – Vol. 1872. – P. 213–225. – Access mode: http://cage.ugent.be/~klein/ papers/ ACA.pdf 10. Суясов Д. И. Выделение структурных признаков изображений символов на основе клеточных автоматов с метками [Электронный ресурс] / Д. И. Суясов // Информационно-управляющие системы, 2010. – № 4. – С. 39–45. – Режим доступа:http://cyberleninka.ru/article/n/vydelenie-strukturnyh-priznakovizobrazheniy- simvolov-na-osnove-kletochnyh-avtomatov-smetkami

Published

2015-08-02

How to Cite

Zhikharevich, V. V., Myroniv, I. V., & Ostapov, S. E. (2015). CHARACTER RECOGNITION ALGORITHM ON THE BASE OF COMPETITIVE CELLULAR AUTOMATA. Radio Electronics, Computer Science, Control, (4). https://doi.org/10.15588/1607-3274-2015-4-6

Issue

Section

Neuroinformatics and intelligent systems