GENETIC ALGORITHMS IN OPTIMIZATION OF MULTIEXTREMUM FUNCTIONS WITH LARGE PARAMETERS NUMBER

Authors

  • O. Ye. Mochalin Kyiv State Maritime Academy named after hetman Petro Konashevich-Sahaydachniy, Kyiv, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2015-4-9

Keywords:

optimization, genetic algorithm, Soft Computing, genetic operators, coding of solutions.

Abstract

An optimization problem is formally formulated. The main advantages and disadvantages of classical optimization methods are considered
for this problem. Basic prerequisites for the emergence and history development of the instrument of genetic algorithms are highlighted. The current state of the bibliography which is dedicated to the use of search genetic algorithms is analyzed. The basic ideas and underlying principles of genetic algorithms functioning are considered. A review of the most commonly used genetic operators: crossover and mutation, is made. The basic steps of classical genetic algorithm operation are analyzed in detail. The coding problem of solutions in the chromosomes and the selection of individual pairs for crossbreeding are considered. Some common selection strategies are presented as well. The basic benefits of the binary coding of solutions in the chromosomes that using Gray code are formulated. The recommendations are also given on the using of solutions real coding in different situations. The two main classes of parallel genetic algorithms: «islands» and «master – slave», are described. The example of using a genetic algorithm to optimize multiextremal function depending on a large number of parameters is showed. Experimental data are presented which confirm the benefits of graphic processors using in parallel implementation of genetic algorithm. The expediency recommendations of the use of genetic algorithms in different situations are set out.

References

Гладков Л. А. Генетические алгоритмы / Л. А. Гладков, В. В. Курейчик, В. М. Курейчик. – М. : ФИЗМАТЛИТ, 2006. – 320 с. 2. Калиткин Н. Н. Численные методы / Н. Н. Калиткин. – М. : Наука, 1978.– 512 с. 3. Holland J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence / J. H. Holland. – Cambridge : A Bradford Book, 1992. – 211 p. 4. Goldberg D. Genetic Algorithms in Search, Optimization, and Machine Learning / D. Goldberg. – Boston : Addison-Wesley Professional, 1989. – 432 p. 5. Скобцов Ю. А. Основы эволюционных вычислений / Ю. А. Скобцов. – Донецк : ДонНТУ, 2008. – 326 с. 6. Soft computing: new trends and application / [L. Fortuna, G. Rizzotto, M. Lavorgna, G. Nunnari and other]. – Heidelberg : Springer, 2001. – 267 p. 7. Whitley D. A genetic algorithm tutorial / D. Whitley // Statistics and Computing. – 1994. – Vol. 4. – P. 65–85. DOI: 10.1007/ BF00175354. 8. Дарвин Ч. Происхождение видов путем естественного отбора / Ч. Дарвин. – Спб. : Наука, 2001.– 568 с. 9. Панченко Т. В. Генетические алгоритмы / Т. В. Панчено. – Астрахань : Астраханский университет, 2007. – 87 с. 10. Хэмминг Р. В. Теория кодирования и теория информации / Р. В. Хэмминг. – М. : Радио и связь, 1983. – 176 с. 11. Выбор размера популяции для генетического алгоритма [Электронный документ]. – Режим доступа: http://habrahabr.ru/post/114910/. – 25.12.2014 г. – Загл. с экрана. 12. Иванов Д. Е. Масштабируемый параллельный генетический алгоритм построения идентифицирующих последовательностей для современных многоядерных вычислительных систем / Д. Е. Иванов // Управляющие системы и машины. – Киев, 2011. – № 1. – С. 25–32. 13. Мочалин А. Е. Использование параллельных генетических алгоритмов в методе обработки трассерных изображений BORF / А. Е. Мочалин // Вісник черкаського університету. – Черкаси, 2013. – № 38(291). – С. 58–64.

Published

2015-02-23

How to Cite

Mochalin, O. Y. (2015). GENETIC ALGORITHMS IN OPTIMIZATION OF MULTIEXTREMUM FUNCTIONS WITH LARGE PARAMETERS NUMBER. Radio Electronics, Computer Science, Control, (4). https://doi.org/10.15588/1607-3274-2015-4-9

Issue

Section

Neuroinformatics and intelligent systems