A MODIFIED BAT ALGORITHM FOR SOLVING GLOBAL OPTIMIZATION PROBLEM
DOI:
https://doi.org/10.15588/1607-3274-2015-4-14Keywords:
bat algorithm, population algorithm, swarm intelligence, global optimization.Abstract
In this paper we consider a bat algorithm for solving the problem of global optimization. This metaheuristic algorithm applies to swarm intelligence algorithms, which are developing rapidly in recent years. The aim of the work is to improve the bat algorithm, study its efficiency and application for solving optimization problems. A modified version of the algorithm in which to calculate speed of the bats used the technique of particle swarm optimization is proposed. The computational experiments have been conducted to compare the accuracy and the speed of convergence of the canonical and the modified algorithms. It was found that the proposed version of the algorithm is more effective in finding the global minimum of unimodal and multimodal test functions. The dependence of the efficiency of modified bat algorithm from the set parameters is investigated. As variable parameters chosen initial values of the loudness and pulse emission rate emitted by bats. The modified algorithm is applied to solve practical problem of minimize the cost of pressure vessel design. The comparison of the solution of the optimization problem with the results of other authors who used both classical and population algorithms was conducted.References
Карпенко А. П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой : учебное пособие / А. П. Карпенко. – Москва : Издательство МГТУ им. Н. Э. Баумана, 2014. – 448 c. 2. Субботін С. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей : монографія / С. О. Субботін, А. О. Олійник, О. О. Олійник ; під заг. ред. С. О. Субботіна. – Запоріжжя : ЗНТУ, 2009. – 375 с. 3. Карпенко А. П. Популяционные алгоритмы глобальной поисковой оптимизации. Обзор новых и малоизвестных алгоритмов / А. П. Карпенко // Приложение к журналу «Информаци- онные технологии». – 2012. – № 7. – C. 1–32. 4. Yang X. S. A new metaheuristic bat-inspired algorithm / X. S. Yang // Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). – 2010. – Vol. 284. – P. 65–74. 5. Частикова В. А. Алгоритм летучих мышей для решения задачи глобальной оптимизации / В. А. Частикова, Е. Ф. Новикова // Научные труды КубГТУ (электронный сетевой политематический журнал) [Электронный ресурс]. – № 2. – 2015. – Режим доступа : http://ntk.kubstu.ru/file/348. 6. Yang X. S. Bat algorithm for multi-objective optimization / X. S. Yang // International Journal of Bio-Inspired Computation. – 2011. – Vol. 3, № 5. – P. 267–274. DOI:10.1504/IJBIC.2011.042259. 7. M BBA: a binary bat algorithm for feature selection / [Nakamura R., Pereira L., Costa K. and other] // Сonference on graphics, patterns and images (25th SIBGRAPI), August 22–25, 2012 : IEEE Publication. – Р. 291–297. DOI:10.1109/ SIBGRAPI.2012.47. 8. Fister I. J. A hybrid bat algorithm / I. J. Fister, D. Fister, X. S. Yang // Electrotechnical Review. – 2013. – Vol. 80, № 1–2. – P. 1–7. 9. Wang G. A Novel hybrid bat algorithm with harmony search for global numerical optimization / Gaige Wang, Lihong Guo // Journal of Applied Mathematics : Hindawi Publishing Corporation [Элек- тронный ресурс]. – Vol. 2013. DOI:0.1155/2013/696491. 10. Yang X. S. Bat algorithm: literature review and applications / Xin-She Yang, Xingshi He // International Journal of Bio-Inspired Computation. – 2013. – Vol. 5. – № 3. – Р. 141-149. DOI:10.1504/IJBIC.2013.055093. 11. Clerc M. The particle swarm – explosion, stability, and convergence in a multidimensional complex space / M. Clerc, J. Kennedy // IEEE Transactions on Evolutionary Computation. – 2002. – Vol. 6. – № 1. – P. 58–73. DOI:10.1109/4235.985692. 12. Cagnina L. C. Solving engineering optimization problems with the simple constrained particle swarm optimizer / L. C. Cagnina, S. C. Esquivel, C. A. C. Coello // Informatica. – 2008. – Vol. 32, № 3. – P. 319–326. 13. Sandgren E. Nonlinear integer and discrete programming in mechanical design / E. Sandgren // Proceedings of the ASME Design Technology Conference : Kissimine. – 1988. – P. 95– 105. 14. Kannan B. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design / B. Kannan, S. N. Kramer // Journal of mechanical design. – 1994. – Vol. 116, № 2. – P. 405–411. DOI:10.1115/1.2919393. 15.He Q. An effective co-evolutionary particle swarm optimization for constrained engineering design problems / Qie He, Ling Wang // Engineering applications of artificial intelligence. – 2007. – Vol. 20, № 1. – P. 89–99. 16. Multiple trial vectors in differential evolution for engineering design / Mezura-Montes E., Coello Coello C. A., Vel zquez-Reyes J., Munoz-D vila L. // Engineering Optimization. – 2007. – Vol. 39, № 5. – P. 567–589. 17. Bernardino H. S. A new hybrid AIS-GA for constrained optimization problems in mechanical engineering / H. S. Bernardino, H. J. C. Barbosa, A. C. C. Lemonge, L. G. Fonseca // Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1–6 June 2008. – P. 1455–1462. DOI:10.1109/CEC.2008.4630985. 18. Kaveh A. An improved ant colony optimization for constrained engineering design problems / A. Kaveh, S. Talatahari // Engineering Computations. – 2010. – Vol. 27, № 1. – P. 155–182. 19. Akay B. Artificial bee colony algorithm for large-scale problems and engineering design optimization / Bahriye Akay, Dervis Karaboga // Journal of intelligent manufacturing. – 2012. – Vol. 23, № 4. – P. 1001–1014. 20. Mirjalili S. Grey wolf optimizer / S. Mirjalili, S. M. Mirjalili, A. Lewis // Advances in engineering software. – 2014. – Vol. 69. – P. 46–61.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 N. O. Krasnoshlyk
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.