BUILDING OF RECOGNITION OPERATORS IN CONDITION OF FEATURES’ CORRELATIONS
DOI:
https://doi.org/10.15588/1607-3274-2016-1-7Keywords:
pattern recognition, model of recognition operators, potential function, features’ correlations, subset of strongly correlated features, representative feature, preferred correlation model.Abstract
The problem of recognizing of patterns given in the space of correlated features is considered. The new approach to the building of modelof recognition operators, which considers the correlation of given features, is proposed. The building of the model is carried out for potential
function type recognition operators. The main idea of the proposed approach is formation of uncorrelated subsets of strongly correlated
features and extracting preferred correlation model for each of subsets of strongly correlated features. Analysis of the results shows that the
considered recognition operators are used in cases when there is a certain correlation between objects belonging to the same class. When the
expression of this relationship is weak, classical model of recognition operators is used. The main advantage of the proposed recognition
operators is to improve the accuracy and the significant reduction in the volume of computational operations in recognition of unknown
objects, which allows them to use when building recognition systems working in real time.
References
Айзерман М. А. Метод потенциальных функций в теории обучения машин / М. А. Айзерман, Э. М. Браверманн, Л. И. Розоноэр. – М. : Наука, 1970. – 348 с. 2. Журавлев Ю. И. Избранные научные труды / Ю. И. Журавлев. – М. : Магистр, 1998. – 420 с. 3. Журавлев Ю. И. Распознавание. Математические методы. Программная система. Практические применения / Ю. И. Журавлев, В. В. Рязанов, О. В. Сенько. – М. : Фазис, 2006. –159 с. 4. Камилов М. М. Современное состояние вопросов построения моделей алгоритмов распознавания / М. М. Камилов, Н. М. Мирзаев, С. С. Раджабов. // Научный журнал: Химическая технология. Контроль и управление. – 2009. – № 2. – С. 21–27. 5. Загоруйко Н. Г. Прикладные методы анализа данных и знаний / Н. Г. Загоруйко. – Новосибирск : ИМ СО РАН, 1999. 6. Лбов Г. С. Логические решающие функции и вопросы статистической устойчивости решений / Г. С. Лбов, Н. Г. Старцева. – Новосибирск : Изд-во ИМ СО РАН, 1999. – 211 с. 7. Шлезингер М. Десять лекций по статистическому и структурному распознаванию / М. Шлезингер, В. Главач. – К. : Наукова думка, 2004. – 545 c. 8. Потапов А. С. Распознавание образов и машинное восприятие / А. С. Потапов. – СПб. : Политехника, 2007. – 548 с. 9. Duda R. O. Pattern Classification, Second Edition / R. O. Duda, P. E. Hart, D. G. Stork. – New York : John Wiley, Inc., 2001. – 680 p. 10. Vapnik V. Statistical Learning Theory / V. Vapnik. – New York : John-Wiley Sons, Inc., 1998. – 732 p. 11. Theodoridis S. Pattern Recognition: Theory and Applications, 4th edition / S. Theodoridis, K. Koutroumbas. – New York : Academic Press, 2009. – 957 p. 12.Dougherty G. Pattern Recognition and Classification: An Introduction / G. Dougherty. – New York: Springer, 2013. – 196 p. 13. Фазылов Ш. Х. Построение модели алгоритмов вычисления оценок с учетом большой размерности признакового простран- ства / Ш. Х. Фазылов, Н. М. Мирзаев, С. С. Раджабов // Вестник СГТУ. – Саратов, 2012. – № 1 (64), Вып. 2. – С. 274–279.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Sh. Kh. Fazilov, N. M. Mirzaev, O. N. Mirzaev
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.