THE METHOD OF DIAGNOSTIC MODEL SYNTHESIS BASED ON RADIAL BASIS NEURAL NETWORKS WITH THE SUPPORT OF GENERALIZATION PROPERTIES

Authors

  • S.A. Subbotin Zaporizhzhya National Technical University, Zaporizhzhya, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2016-2-8

Keywords:

neural network, radial base network, training, synthesis, diagnostics.

Abstract

Urgent problemof automation of radial basis neural network synthesis based on a set of precedents for decision-making in the diagnosis is
solved in the paper. The method for the synthesis of radial basis neural network is proposed. It forms at the beginning one class pattern, which,
if necessary, supplemented with new patterns formed on the basis of wrongly recognized instances, and then operates with the distance from
the instances to the patterns of the clusters. On the basis of the obtained pattern coordinates it further automatically synthesize structure and adjust the weights of the network, which is further optimized to improve the generalizing and interpretability properties by weights contrasting. The proposed method does not require the user specify the number of clusters, has no uncertainty in selection the number of neurons in the first layer and in the choice of the initial values of the network weights, seeks to minimize the size of the network, and characterized by an acceptable time of learning through the use of network optimization procedure allows to obtain nonredundant, contrast, and interpretable neural models. The software implementing proposed method has been developed. The experiments confirming efficiency of developed software have been conducted. They allow to recommend the proposed method for use in practice in solving the problems of diagnostic model constructing by precedents to automate the decision-making in technical and biomedical diagnostics.

References

Intelligent fault diagnosis and prognosis for engineering systems / [G. Vachtsevanos, F. Lewis, M. Roemer et al.]. – New Jersey: John Wiley & Sons, 2006. – 434 р. 2. Price C. Computer based diagnostic systems / C. Price. – London: Springer, 1999. – 136 p. 3. Дли М. И. Нечеткая логика и искусственные нейронные сети / М. И. Дли. – М. : Физматлит, 2003. – 225 с. 4. Рутковская Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский ; пер. с польск. И. Д. Рудинского. – М. : Горячая линия – Телеком, 2004. – 452 с. 5. Rao V. B. C++ neural networks and fuzzy logic / V. B. Rao. – Foster City : M&T Books, 1995. – 549 p. 6. Bishop C. Neural networks for pattern recognition / C. Bishop. – New York : Oxford University Press, 1995. – 482 p. 7. Круглов В. В. Искуственные нейронные сети. Теория и практика / В. В. Круглов, В. В. Борисов. – М. : Горячая линия – Телеком, 2001. – 382 с. 8. Осовский С. Нейронные сети для обработки информации / С. Осовский. – М. : Финансы и статистика, 2004. – 344 с. 9. Руденко О. Г. Штучні нейронні мережі / О. Г. Руденко, Є. В. Бодянський. – Харків : Компанія СМІТ, 2006. – 404 с. 10. Хайкин С. Нейронные сети: полный курс / С. Хайкин. – СПб : Вильямс, 2005. – 1104 с. 11. Субботін С. О. Нейронні мережі : навч. посіб. / С. О. Субботін, А. О. Олійник; за ред. С. О. Субботіна. – Запоріжжя ЗНТУ, 2014. – 132 с. 12. Олійник А. О. Інтелектуальний аналіз даних : навчальний посібник / А. О. Олійник, С. О. Субботін, О. О. Олійник. – Запоріжжя : ЗНТУ, 2012. – 278 с. 13. Интеллектуальные информационные технологии проектирования автоматизированных систем диагностирования и распознавания образов : монография / [С. А. Субботин, Ан. А. Олейник, Е. А. Гофман и др.] ; под ред. С. А. Субботина. – Харьков : ООО «Компания Смит», 2012. – 317 с.

How to Cite

Subbotin, S. (2016). THE METHOD OF DIAGNOSTIC MODEL SYNTHESIS BASED ON RADIAL BASIS NEURAL NETWORKS WITH THE SUPPORT OF GENERALIZATION PROPERTIES. Radio Electronics, Computer Science, Control, (2). https://doi.org/10.15588/1607-3274-2016-2-8

Issue

Section

Neuroinformatics and intelligent systems