• A. V. Galchenko Zaporozhzhya National Technical University, Zaporizhzhya, Ukraine, Ukraine
  • G. L. Kozina Zaporozhzhya National Technical University, Zaporizhzhya, Ukraine, Ukraine



protocol, deniable encryption, ambiguity, distribution keys, fake messages, an extended Rabin’s scheme, oblivious transfer, factorization, discrete logarithm.


The article discusses the stability of modern cryptographic systems to attack from coercion in respect of subscribers cryptographic systems. Due to the rapid development of information technology, this problem is relevant in the field of information security. To address the sustainability of modern cryptographic systems use algorithms offered by the authors deniable encryption ensures that the attacker is unable to get any valuable information from subscribers. Solving the problem is to use Meng’s deniable encryption algorithm, which guarantees
protection not only information, but also the participants of the exchange. The main purpose of the article is performed by modifying the initial Meng’s deniable encryption algorithm [1] with using Oblivious Transfer Protocol , which prompted by Moni Naor [2]. Oblivious Transfer Protocol to significantly reduce the time required to perform the Meng’s deniable encryption algorithm, and facilitates its implementation to solve applied problems in the field of information security.
As a result of experiments, the authors confirmed that Oblivious Transfer Protocol using is an effective solution to the problem of generation and distribution of keys in the Meng’s deniable encryption algorithm.


Wang J. A Receiver Deniable Encryption Scheme / J. Wang, Bo Meng // Proceedings of the 2009 International Symposium on Information Processing (ISIP’09), 21–23 August 2009: proceedings. – Huangshan : P. R. China, 2009. – P. 254–257. 2. Naor M. Efficient oblivious transfer protocols / M. Naor, B. Pinkas // Proceedings of SIAM Symposium on Discrete Algorithms (SODA ’01), 2001: proceedings. – Society for Industrial and Applied Mathematics, 2001. – P. 448–457. 3. Ibrahim H. Receiver–deniable Public–Key Encryption / H. Ibrahim // International Journal of Internet Security. – 2009. – Vol. 8, № 2. – P. 159–165. 4. Козіна Г. Л. Заперечуване шифрування / Г. Л. Козіна, А. В. Гальченко // Тиждень науки – 2015: Тези доповідей щорічної наук. – практ. конф. викладачів, науковців, молодих учених, аспірантів, студентів ЗНТУ, Запоріжжя, 13–17 квітня 2015 р. – Запоріжжя : ЗНТУ, 2015. 5. Canetti R. Deniable Encryption / [R. Canetti, С. Dwork, М. Naor, R. Ostronsky] // Advances in Cryptology. – CRYPTO, 1997, Proceedings. – P. 90–104. 6. Молдовян Н.А. Расширение криптосхемы Рабина: алгоритм отрицаемого шифрования по открытому ключу / Н. А. Молдовян, А. А. Горячев, М. А. Вайчикаускас // ВЗИ. Журнал по вопросам защиты информации. – ФГУП «ВИМИ», 2014. – № 2. – С. 12–16. 7. Фисун С.Н. Комбинированный алгоритм вероятностного шифрования / С. Н. Фисун, О. И. Куржиевская // Изд-во СевНТУ, 2010. – № 101. – С. 37–40. 8. Bresson E. A Simple Public – Key Cryptosystem with a Double Trapdoor Decryption Mechanism and its Applications / E. Bresson, D. Catalano, D. Pointcheval // Advances in Cryptology – ASIACRYPT, 2003. LNCS, Vol. 2894. Springer, Heidelberg, 2003. – P. 37–54. 9. Klonowski M. Practical Deniable Encryption // M. Klonowski, P. Kubiak, and M. Kutyіowsk // SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and Practice of Computer Science, Slovakia : Novy Smokovec, 19–25 January 2008: proceedings. – 2008. – P. 599–609.

How to Cite

Galchenko, A. V., & Kozina, G. L. (2016). MODIFICATION OF MENG’S DENIABLE ENCRYPTION ALGORITHM. Radio Electronics, Computer Science, Control, (2).



Progressive information technologies