STRUCTURAL IDENTIFICATION OF IMAGE RECOGNITION BASED WITH MODELS OF INTELLECTUAL SELFORGANIZATION FEATURES
DOI:
https://doi.org/10.15588/1607-3274-2016-3-5Keywords:
computer vision, structural image recognition, features, descriptors, structural description, SURF, self-organization, clustering, Kohonen network, descriptions similarity vector, matrix of cluster characteristicsAbstract
Paper describes an investigation about the problem of image recognition in computer vision based on a set of structural SURF-features. Self-organization process is proposed to be performed in space of structural features with a goal to increase recognition process performance. Kohonen neural network is used as self-organization method. The object of research is the method of similarity calculations and models of intelligent data processing in the new feature space. Thesubject of research is the systematization and grouping of sets of structural features of visual objects. Goal of a paper is to construct structural recognition method based on input data as a set of cluster structural features obtained as a result of self-organization. The objectives of the research are the investigation of the features and analysis of models to calculate clusters of features, the construction of the modified measures of structural similarity, the experimental evaluation of the recognition quality for different ways of descriptions comparison in the application-based visual image database.
Construction of an image recognition method based on etalon descriptions as a cluster was proposed, recognition is based on the
classification of the structural features of an object in cluster space with further calculation and optimization of the similarity vector descriptions.
Experimental investigations and simulations of the proposed recognition method on the test image set with the use of SURF characteristic
features were performed. Performance boost and efficiency of the method were confirmed, estimation of recognition quality for different
processing options was performed.
References
Гороховатский В. А. Структурный анализ и интеллектуальная обработка данных в компьютерном зрении : монография / В. А. Гороховатский. – Х. : Компания СМИТ, 2014. – 316 с. 2. Bay H. Surf: Speeded up robust features / H. Bay, T. Tuytelaars, L.Van Gool // Computer Vision: Ninth European Conference on Computer Vision, Graz, 7–13 May, 2006: proceedings. – Berlin : Springer, 2006. – P. 404–417. 3. Берестовский А. Е. Нейросетевые технологии самообучения в системах структурного распознавания визуальных объек- тов / А. Е. Берестовский, А. Н. Власенко, В. А. Гороховатский // Реєстрація, зберігання і обробка даних. – 2015. – Т. 17, № 1. – С. 108–120. 4. Гороховатский В. А. Построение и применение функции принадлежности для результативного структурного анализа изображений / В. А. Гороховатский, Ю. А. Куликов, А. Е. Берестов- ский // Бионика интеллекта. – 2015. – №1 (84). – C. 13–18. 5. Паклин Н.Б. Бизнес-аналитика: от данных к знаниям : учеб. пособ. / Н. Б. Паклин, В. И. Орешков. – СПб. : Питер, 2013. – 704 с. 6. Duda R. O. Pattern classification / R. O. Duda, P. E. Hart, D. G. Stork. – 2ed., Wiley, 2000. – 738 p. 7. Кохонен Т. Самоорганизующиеся карты / Т. Кохонен ; пер. 3-го англ. изд. – М. : БИНОМ, Лаборатория знаний, 2013. – 655 с. 8. Маннинг К. Д. Введение в информационный поиск / К. Д. Маннинг, П. Рагхаван, Х. Шютце ; пер. с англ. – М. ООО И. Д. Вильямс, 2011. – 528 с. 9. Quality Criteria for Multidimensional Object Recognition Based Upon Distance Matrices / A. V. Gorokhovatsky, V. A. Gorokhovatsky, A. N. Vlasenko, N. V. Vlasenko // Telecommunications and Radio Engineering. – 2014. – Vol. 73, No. 18. – P. 1661–1670. 10. Мулеса О. Ю. Методи врахування суб’єктивного характеру вхідних даних для задачі голосування / О. Ю. Мулеса // Східно- європейський журнал передових технологій. Серія: процеси управління. – 2015. – Том 1, № 3 (73). – С. 20–25.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2016 V. A. Gorokhovatsky, A.V. Gorokhovatskyi, A. E. Berestovskyi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.