STRUCTURAL IDENTIFICATION OF IMAGE RECOGNITION BASED WITH MODELS OF INTELLECTUAL SELFORGANIZATION FEATURES

Authors

  • V. A. Gorokhovatsky Kharkiv Educational and Scientific Institute SHEI “The University of banking”, Kharkiv, Ukraine, Ukraine
  • A.V. Gorokhovatskyi Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine, Ukraine
  • A. E. Berestovskyi Kharkiv National University of Radioelectronics, Kharkiv, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2016-3-5

Keywords:

computer vision, structural image recognition, features, descriptors, structural description, SURF, self-organization, clustering, Kohonen network, descriptions similarity vector, matrix of cluster characteristics

Abstract

Paper describes an investigation about the problem of image recognition in computer vision based on a set of structural SURF-features. Self-organization process is proposed to be performed in space of structural features with a goal to increase recognition process performance. Kohonen neural network is used as self-organization method. The object of research is the method of similarity calculations and models of intelligent data processing in the new feature space. The
subject of research is the systematization and grouping of sets of structural features of visual objects. Goal of a paper is to construct structural recognition method based on input data as a set of cluster structural features obtained as a result of self-organization. The objectives of the research are the investigation of the features and analysis of models to calculate clusters of features, the construction of the modified measures of structural similarity, the experimental evaluation of the recognition quality for different ways of descriptions comparison in the application-based visual image database.
Construction of an image recognition method based on etalon descriptions as a cluster was proposed, recognition is based on the
classification of the structural features of an object in cluster space with further calculation and optimization of the similarity vector descriptions.
Experimental investigations and simulations of the proposed recognition method on the test image set with the use of SURF characteristic
features were performed. Performance boost and efficiency of the method were confirmed, estimation of recognition quality for different
processing options was performed.

References

Гороховатский В. А. Структурный анализ и интеллектуальная обработка данных в компьютерном зрении : монография / В. А. Гороховатский. – Х. : Компания СМИТ, 2014. – 316 с. 2. Bay H. Surf: Speeded up robust features / H. Bay, T. Tuytelaars, L.Van Gool // Computer Vision: Ninth European Conference on Computer Vision, Graz, 7–13 May, 2006: proceedings. – Berlin : Springer, 2006. – P. 404–417. 3. Берестовский А. Е. Нейросетевые технологии самообучения в системах структурного распознавания визуальных объек- тов / А. Е. Берестовский, А. Н. Власенко, В. А. Гороховатский // Реєстрація, зберігання і обробка даних. – 2015. – Т. 17, № 1. – С. 108–120. 4. Гороховатский В. А. Построение и применение функции принадлежности для результативного структурного анализа изображений / В. А. Гороховатский, Ю. А. Куликов, А. Е. Берестов- ский // Бионика интеллекта. – 2015. – №1 (84). – C. 13–18. 5. Паклин Н.Б. Бизнес-аналитика: от данных к знаниям : учеб. пособ. / Н. Б. Паклин, В. И. Орешков. – СПб. : Питер, 2013. – 704 с. 6. Duda R. O. Pattern classification / R. O. Duda, P. E. Hart, D. G. Stork. – 2ed., Wiley, 2000. – 738 p. 7. Кохонен Т. Самоорганизующиеся карты / Т. Кохонен ; пер. 3-го англ. изд. – М. : БИНОМ, Лаборатория знаний, 2013. – 655 с. 8. Маннинг К. Д. Введение в информационный поиск / К. Д. Маннинг, П. Рагхаван, Х. Шютце ; пер. с англ. – М. ООО И. Д. Вильямс, 2011. – 528 с. 9. Quality Criteria for Multidimensional Object Recognition Based Upon Distance Matrices / A. V. Gorokhovatsky, V. A. Gorokhovatsky, A. N. Vlasenko, N. V. Vlasenko // Telecommunications and Radio Engineering. – 2014. – Vol. 73, No. 18. – P. 1661–1670. 10. Мулеса О. Ю. Методи врахування суб’єктивного характеру вхідних даних для задачі голосування / О. Ю. Мулеса // Східно- європейський журнал передових технологій. Серія: процеси управління. – 2015. – Том 1, № 3 (73). – С. 20–25.

How to Cite

Gorokhovatsky, V. A., Gorokhovatskyi, A., & Berestovskyi, A. E. (2016). STRUCTURAL IDENTIFICATION OF IMAGE RECOGNITION BASED WITH MODELS OF INTELLECTUAL SELFORGANIZATION FEATURES. Radio Electronics, Computer Science, Control, (3). https://doi.org/10.15588/1607-3274-2016-3-5

Issue

Section

Neuroinformatics and intelligent systems