BUILDING A FULLY DEFINED NEURO-FUZZY NETWORK WITH A REGULAR PARTITION OF A FEATURE SPACE BASED ON LARGE SAMPLE

Authors

  • S. A. Subbotin Zaporizhzhya National Technical University, Zaporizhzhya, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2016-3-6

Keywords:

neuro-fuzzy network, training, synthesis, classification.

Abstract

The problem of model synthesis automation for pattern classification on the features is solved. The method of neuro-fuzzy model
synthesis on precedents is proposed. It is able to construct completely defined neural models based on the regular partition of a feature space. The method calculates the coordinates of the cluster centers as coordinates of the centers of rectangular blocks in the space of feature intervals and clusters membership to classes determine on the training set: for clusters containing observations the membership is determined by the maximum frequency of instances of the corresponding classes in the cluster, and for clusters that do not contain observations the membership is determined by the maximum potential induced on it by the clusters with known class membership. The resulting set of clusters-rules is mapped to the structure of Mamdani neuro-fuzzy network and its parameter values are calculated on the base of parameters of feature set partition and cluster centers. The proposed method does not require loading the entire training sample in the computer memory and speeds up the process of model synthesis providing an acceptable level of data generalization by obtained neural model. The software that implements the proposed method is developed. The experiments confirming the performance of developed mathematical support are conducted. They allow to recommend the method for the construction of neuro-fuzzy models based on a large samples.

References

Analysis and design of intelligent systems using soft computing techniques / eds. : P. Melin, O.R. Castillo, E.G. Ramirez, J. Kacprzyk. – Heidelberg : Springer, 2007. – 855 p. 2. Buckleya J. J. Fuzzy neural networks: a survey / J. J. Buckleya, Y. Hayashi // Fuzzy sets and systems. – 1994. – Vol. 66, Issue 1. – P. 1–13. 3. Дли М. И. Нечеткая логика и искусственные нейронные сети / М. И. Дли. – М. : Физматлит, 2003. – 225 с. 4. Рутковская Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский ; пер. с польск. И. Д. Рудинского. – М. : Горячая линия – Телеком, 2004. – 452 с. 5. Интеллектуальные информационные технологии проектирования автоматизированных систем диагностирования и распознавания образов : монография / [С. А. Субботин, Ан. А. Олейник, Е. А. Гофман, С. А. Зайцев, Ал. А. Олейник] ; под ред. С. А. Субботина. – Харьков : Компания СМИТ, 2012. – 318 с. 6. Осовский С. Нейронные сети для обработки информации / С. Осовский. – М. : Финансы и статистика, 2004. – 344 с. 7. Фор А. Восприятие и распознавание образов / А. Фор ; под ред. Г. П. Катыса. – М. : Машиностроение, 1989. – 271 с. 8. Айзерман М. А. Метод потенциальных функций в теории обучения машин / М. А. Айзерман, Э. М. Браверман, Л. И. Розоноэр. – М. : Наука, 1970. – 384 с. 9. Ярушкина Н. Г. Основы теории нечетких и гибридных систем / Н. Г. Ярушкина. – М. : Финансы и статистика, 2004. – 320 с. 10. Яхъяева Г. Э. Нечеткие множества и нейронные сети : учеб. пособие / Г. Э. Яхъяева. – М. : Интуит, 2006. – 316 с. 11. Комп’ютерна програма «Автоматизована система синтезу нейроме-режних та нейро-нечітких моделей для неруйнівної діагностики та класифікації образів за ознаками» : cвідоцтво про реєстрацію авторського права на твір № 35431 / С. О. Субботін. – Держ. департамент інтелектуальної власності. – № 34011 ; заявл. 21.04.10 ; зареєстр. 21.10.10. 12. Прогрессивные технологии моделирования, оптимизации и интеллектуальной автоматизации этапов жизненного цикла авиационных двигателей : монография / [А. В. Богуслаев, Ал. А. Олейник, Ан. А. Олейник, Д. В. Павленко, С. А. Субботин]; под ред. Д. В. Павленко, С. А. Субботина. – Запорожье : ОАО «Мотор Сич», 2009. – 468 с.

How to Cite

Subbotin, S. A. (2016). BUILDING A FULLY DEFINED NEURO-FUZZY NETWORK WITH A REGULAR PARTITION OF A FEATURE SPACE BASED ON LARGE SAMPLE. Radio Electronics, Computer Science, Control, (3). https://doi.org/10.15588/1607-3274-2016-3-6

Issue

Section

Neuroinformatics and intelligent systems

Most read articles by the same author(s)

> >>