• A. E. Kovnir Zaporizhzhia National Technical University, Zaporizhzhya, Ukraine, Ukraine
  • K. E. Stepanenko Donetsk National Technical University, Krasnoarmiysk, Ukraine, Ukraine
  • M. B. Ilyashenko Zaporizhzhia National Technical University, Zaporizhzhya, Ukraine, Ukraine



image reconstruction, defocusing, Fourier transform, distortion operator, deconvolution.


This paper presents a method of improving the quality of the restoration of defocused images by reducing the effect of rounding errors when sampling on the reconstructed image. The rounding error can be effectively controlled by knowing the nature of the restored image and its distortions. Algorithm that restore lost during rounding values of pixels need to be built based on knowledge of the nature of the image, the required accuracy and the permissible speed of the algorithm. The work contains an example of linear interpolation usage at the source image preprocessing stage as the basis for the construction of refined pixel values of the reconstructed image from the discrete values of the pixels of the original defocused image. The proposed method is not tied to a specific deconvolution algorithm and its use in a pair with any of them gives better results. The paper considers the joint use of presented method with the inverse filter.
This paper presents a practical example of image reconstruction based on a linear interpolation of the pixels of the original image. It is
shown that the proposed method affects a reduction of error recovery from about 3% to 20%, depending on the size and specific images. It
showed a decrease in the error recovery with increasing the size of the original image defocused.


Гонсалес Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М. : Техносфера, 2005. – 1072 с. 2. Гонсалес Р. Цифровая обработка изображений в MATLAB / Р. Гонсалес, Р. Вудс, С. Эд-динс. – М. : Техносфера, 2006. – 616 с. 3. Монич Ю. И. Оценки качества для анализа цифровых изображений / Ю. И. Монич, В. В. Старовойтов // Искусственный интеллект. – 2008. – № 4. – С. 376–386. 4. Kundur D. Blind image deconvolution / D. Kundur, D. Hatzinakos // IEEE Signal Processing Magazine. – 1996. – Vol. 13, № 3. – P. 43–64. 5. Removing camera shake from a single photograph / [R. Fergus, B. Singh, A. Hertzmann and other] // In ACM Trans. Graph. – 2006. – Vol. 25. – P. 787–794. 6. Reeves S. J. Blur identification by the method of generalized cross-validation / S. J. Reeves, R. M. Mersereau // IEEE Trans. on Image Processing. – 1992. – Vol. 1, № 3. – P. 301–311. 7. Direct method for restoration of motion blurred images / [Y. Yitzhaky, I. Mor, A. Lantzman, N. S. Kopeika] // Journal of the Optical Society of America. – 1998. – Vol. 15, Issue 6. – P. 1512–1519. 8. Caron J. N. Noniterative blind data restoration by use of an extracted filter function / J. N. Caron, N. M. Namazi, C. J. Rollins // Applied optics (Appl. opt.). – 2002. – Vol. 41 (32) – P. 68–84. 9. Jalobeanu A. Estimation of blur and noise parameters in remote sensing / A. Jalobeanu, L. Blanc-Feraud, J. Zerubia // In Proceedings of ICASSP. – 2002. – P. 249–256. 10. Geman, D. Constrained restoration and the recovery of discontinuities / D. Geman, G. Reynolds // IEEE Trans. on PAMI. – 1992. – Vol. 14, Issue 3. – P. 367–383. 11. Zarowin C. B. Robust, noniterative, and computationally efficient modification of vab cittert deconvolution optical figuring / C. B. Zarowin // Journal of the Optical Society of America. – 1994. – Vol. 11, Issue 10. – P. 2571–2583. 12.Neelamani R. ForWaRd: Fourier-wavelet regularized deconvolution for illconditioned systems. / R. Neelamani, H. Choi, R. Baraniuk // IEEE Trans. on Signal Processing. – 2004. – Vol. 52, Issue 2. – P. 418–433. 13. Richardson H. W. Bayesian-based iterative method of image restoration / H. W. Richardson // Journal of the Optical Society of America. – 1972. – Vol. 62, Issue 1. – P. 55–59. 14. Lu Yuan. Image deblurring with blurred/noisy image pairs / Lu Yuan, Jian Sun, Long Quan, Heung-Yeung Shum // ACM Transactions on Graphics (TOG) – Proceedings of ACM SIGGRAPH 2007. – 2007. – Vol. 26, Issue 3. – Article 1.

How to Cite

Kovnir, A. E., Stepanenko, K. E., & Ilyashenko, M. B. (2016). DEFOCUSED IMAGE RESTORATION CONFIDENCE INCREASING BY IMPROVING ROUNDING ERRORS CORRECTIONS. Radio Electronics, Computer Science, Control, (3).



Progressive information technologies