DERIVATIVES OF ELEMENTARY INTERVAL FUNCTIONS
DOI:
https://doi.org/10.15588/1607-3274-2016-4-3Keywords:
interval value, interval function, interval derivatives, interval computations, interval-differential calculus.Abstract
The article deals with some problems related to calculation of derivatives of interval-specified functions. These problems are relevant in the study of systems with any level of uncertainty (nondeterministic systems). Specifically we will speak about simple systems described byelementary interval-specific functions. Accordingly we solved the problem of calculating derivatives of elementary interval-specified functions.
Previously obtained formulas and methods of finding of derivatives of interval-defined functions are used. Basic definitions related to the
derivatives of interval functions are given. We present formulas of two types that allow you to calculate interval derivatives. The first type
formulas express derivatives in the closed interval form, which requires computing using the apparatus of interval mathematics. But formulas
of the second type can express derivatives in the open interval form, i.e. in the form of two formulas. Formulas above expresses the lower and the upper limits of the interval representing the derivative. Here finding of the derivative of the interval-defined function is reduced to
computation of two ordinary certain functions. Using above mathematical apparatus we find derivatives of all elementary interval functions: interval constant, interval power function, interval exponential function, interval logarithmic function, interval natural-logarithmic function, interval trigonometric functions (sine, cosine, tangent, cotangent), interval inverse trigonometric functions (arcsine, arccosine, arctangent, arccotangent). Formulas of all derivatives are shown in form of an open interval. The difference between derivatives of interval elementary functions and the derivatives of exact functions (not interval) elementary functions is discussed
References
Гнеденко Б. В. Курс теории вероятностей / Б. В. Гнеденко. – М. : Наука, 2004. – 451 с. 2. Заде Л. А. Понятие лингвистической переменной и его применение к принятию приближенных решений / Л. А. Заде. – М. : Мир, 1976. – 165 с. 3. Алефельд Г. Введение в интервальные вычисления / Г. Алефельд, Ю. Херцбергер. – М. : Мир, 1987. – 360 с. 4. Левин В. И. Интервальная производная и начала недетерминистского дифференциального исчисления / В. И. Левин // Онтология проектирования. – 2013. – № 4 (10). – С. 72–85. 5. Левин В. И. Интервально-дифференциальное исчисление и некоторые его применения / В. И. Левин // Информационные технологии. – 2014. – № 7. – С. 3–10. 6. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 1. / Г. М. Фихтенгольц. – М. : Физматлит, 2001. – 616 с. 7. Левин В. И. Дифференциальное исчисление для интервально-определенных функций / В. И. Левин // Эвристические алгоритмы и распределенные вычисления. – 2015. – Т. 2, № 2. – С. 8–25. 8. Вощинин А. П. Оптимизация в условиях неопределенности / А. П. Вощинин, Г. Р. Сотиров. – М. : Изд-во МЭИ, 1989. – 224 с. 9. Ащепков Л. Т. Универсальные решения интервальных задач оптимизации и управления / Л. Т. Ащепков, Д. В. Давыдов. – М. : Наука, 2006. – 285 с. 10. Moore R. E. Interval Analysis / R. E. Moore. – N. Y. : Prentice-Hall, 1966. – 230 p. 11. Libura M. Integer Programming Problems with Inexact Objective Function / M. Libura // Control and Cybernetics. – 1980. – Vol. 9, No. 4. – P. 189–202. 12. Куржанский А. Б. Задача идентификации – теория гарантированных оценок / А. Б. Куржанский // Автоматика и телемеханика. – 1991. – № 4. – С. 3–26. 13. Hyvonen E. Constraint Reasoning Based on Interval Arithmetic: the Tolerance Propagation Approach / E. Hyvonen // Artificial Intelligence. – 1992. – Vol. 58. – P. 19. 14. Левин В. И. Расчет и анализ поведения неполностью определенных функций методом детерминизации / В.И. Левин // Радиоэлектроника, информатика, управление. – 2016. – № 2.– С. 46–55.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 V. I. Levin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.