TO THE SOLUTION OF ONE-PARAMETRIC MATRIX EQUATIONS OF A(T)⋅X(T)+ X*(T) ⋅B(T) =C(T) TYPE
DOI:
https://doi.org/10.15588/1607-3274-2016-4-6Keywords:
one-parametric conjugated analogue of parameter matrix equation of Sylvester type, reduction of the problem, an analytical method of solution, differential transformations, serial and parallel methods, model example, conditions for the unique solvabilityAbstract
We consider the one-parameter conjugated analogs of Sylvester type matrix equations. On the basis of simple transformations we obtainthe equivalent matrix equation containing only the unknown matrix which should be determined. Next, using the apparatus of Kronecker
products of matrices, the analytical solution of the problem was obtained, which is limited in practical applications, but serves as a basis for the development of numerical-analytical methods for solving the original problem. Serial and parallel numerical and analytical solution methods are proposed based on the differential transformations G. E. Pukhov. With sequential numerical-analytical method we operate with numeric recursive procedures in the first stage of the calculation, and analytical relations – in the second stage. In parallel numerical-analytical method we operate with linear hypersystem of numerical equations in the first stage of the calculation, and analytical relations – in the second stage. For all the methods the relevant conditions for the unique solvability of the problem were obtained. A model example was considered for which using numerical and analytical methods an exact solution of the Taylor was obtained. The proposed numerical-analytical techniques can be efficiently implemented by means of modern information technology.
References
Пухов Г. Е. Дифференциальные преобразования функций и уравнений / Г. Е. Пухов. – К. : Наукова думка, 1984. – 420 с. 2. Гантмахер Ф. Р. Теория матриц / Ф. Р. Гантмахер. – М. : Наука, 2010. – 560 с. 3. Мамонов С. С. Решение матричных уравнений / С. С. Мамонов // Вестник Ряз. гос. ун-та им. С. А. Есенина. – 2009. – Вып. 21, № 1. – С. 115–136. 4. Чуйко С. М. О решении матричного уравнения Сильвестра / С. М. Чуйко // Вестник Одесского национального университета. Сер. : Математика и механика. – 2014. – Т.19:1, № 21. – С. 49–57. 5. Чуйко С. М. О решении матричных уравнений Ляпунова / С. М. Чуйко // Вестник Харьковского национального университета им. В. Н. Каразина. Серия : Математика, прикладная математика и механика. – 2014. – № 1120. – С. 85–94. 6. Чуйко С. М. О решении обобщенного матричного уравнения Ляпунова / С. М. Чуйко // Чебышевский сб. – 2015.– Т.16, Вып. 1. – С. 52–66. 7. Икрамов Х. Д. Матричные уравнения A’+X+XT’+C=B и A’+X+X*’+C=B / Х. Д. Икрамов, Ю. О. Воронцов // Доклады РАН. – 2013. – Т. 449, № 5. – С. 513–515. 8. Piao F. X. The solution to matrix equation A’+X+XT’+C=B / F. X. Piao, Q. L. Zhang, Z. F. Wang // Journal of the Franklin Institute. – 2007. – № 344. – P. 1056–1062. 9. Fernando D. T. The solution of the equation X’+A+A’+XT =0 and its application to the theory of orbits / D. T. Fernando, M. D. Frolian // Linear Algebra and its Application. – 2011. – № 434. – P. 44–67. 10. Djordjevic D. S. Explicit solution of the operator equation A’++X*+X*’+A=B / D. S. Djordjevic // J. Comput. Appl. Math. – 2007, № 200. – P. 701–704.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 S. H. Simonyan, A. A. Ayvazyan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.