THE COMPLEX DATA DIMENSIONALITY REDUCTION FOR DIAGNOSTIC AND RECOGNITION MODEL BUILDING ON PRECEDENTS
DOI:
https://doi.org/10.15588/1607-3274-2016-4-9Keywords:
sample, instance, feature, data dimensionality reduction, sampling, feature selection, diagnosis.Abstract
The problem of data dimensionality reduction for diagnostic and recognizing model construction is solved. The object of study is theprocess of data-driven diagnosis. The subject of study is the data reduction methods for diagnostic model construction on precedents. The
purpose of work is to create a set of indicators to quantify the importance of instances and features, as well as a method of data sample dimensionality reduction in the diagnosis and pattern recognition and problem solving. The mathematical support for the sample formation and feature selection is developed on the base of common approach to the assessment of their significance. The set of indicators is proposed to quantify the individual informativity of instances and features in the local neighborhood in the feature space. The exhaustive search methods for data sample dimensionality reduction in the solution of recognition and diagnosis problems have been further developed. They are modified by taking into account of the offered individual estimations of informativity of instances and features in the search operators. The proposed methods and indicator complex are implemented as software and studied in the solution of data dimensionality reduction problems. The conducted experiments confirmed the efficiency of the developed mathematical tools and allow to recommend them for use in practice for solving the problems of non-destructive diagnosis and pattern recognition on features.
References
Интеллектуальные информационные технологии проектирования автоматизированных систем диагностирования и распознавания образов : монография / С. А. Субботин, Ан. А. Олейник, Е. А. Гофман, С. А. Зайцев, Ал. А. Олейник ; под ред. С. А. Суббо- тина. – Харьков : Компания СМИТ, 2012. – 318 с. 2. Russell E. L. Data-driven diagnosis Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes / E. L. Russell, L. H. Chiang,R. D. Braatz. – London : Springer-Verlag, 2000. – 192 p. DOI: 10.1007/978-1-4471-0409-4 3. Computational intelligence: a methodological introduction / [R. Kruse, C. Borgelt, F.Klawonn et. al.]. – London : Springer- Verlag, 2013. – 488 p. DOI: 10.1007/978-1-4471-5013-8_1 4. Олешко Д. Н. Построение качественной обучающей выборки для прогнозирующих нейросетевых моделей / Д. Н. Олешко, В. А. Крисилов, А. А. Блажко // Штучний інтелект. – 2004. – № 3. – С. 567–573. 5. Subbotin S. A. The training set quality measures for neural network learning / S. A. Subbotin // Optical memory and neural networks (information optics). – 2010. – Vol. 19, № 2. – P. 126–139. DOI: 10.3103/s1060992x10020037 6. Субботин С. А. Критерии индивидуальной информативности и методы отбора экземпляров для построения диагностических и распознающих моделей / С. А. Субботин // Біоніка інтелекту. – 2010. – № 1. – С. 38–42. 7. Encyclopedia of survey research methods / ed. P. J. Lavrakas. – Thousand Oaks: Sage Publications, 2008. – Vol. 1–2. – 968 p. DOI: 10.1108/09504121011011879 8. Hansen M. H. Sample survey methods and theory / M. H. Hansen, W. N. Hurtz, W. G. Madow. – Vol. 1 : Methods and applications. – New York : John Wiley & Sons, 1953. – 638 p. 9. Кокрен У. Методы выборочного исследования / У. Кокрен ; пер. с англ. И. М. Сонина ; под ред. А. Г. Волкова, Н. К. Дружинина. – М. : Статистика, 1976. – 440 с.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 S. A. Subbotin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.