S. A. Subbotin


The problem of data dimensionality reduction for diagnostic and recognizing model construction is solved. The object of study is the
process of data-driven diagnosis. The subject of study is the data reduction methods for diagnostic model construction on precedents. The
purpose of work is to create a set of indicators to quantify the importance of instances and features, as well as a method of data sample dimensionality reduction in the diagnosis and pattern recognition and problem solving. The mathematical support for the sample formation and feature selection is developed on the base of common approach to the assessment of their significance. The set of indicators is proposed to quantify the individual informativity of instances and features in the local neighborhood in the feature space. The exhaustive search methods for data sample dimensionality reduction in the solution of recognition and diagnosis problems have been further developed. They are modified by taking into account of the offered individual estimations of informativity of instances and features in the search operators. The proposed methods and indicator complex are implemented as software and studied in the solution of data dimensionality reduction problems. The conducted experiments confirmed the efficiency of the developed mathematical tools and allow to recommend them for use in practice for solving the problems of non-destructive diagnosis and pattern recognition on features.


sample, instance, feature, data dimensionality reduction, sampling, feature selection, diagnosis.


Интеллектуальные информационные технологии проектирования автоматизированных систем диагностирования и распознавания образов : монография / С. А. Субботин, Ан. А. Олейник, Е. А. Гофман, С. А. Зайцев, Ал. А. Олейник ; под ред. С. А. Суббо- тина. – Харьков : Компания СМИТ, 2012. – 318 с. 2. Russell E. L. Data-driven diagnosis Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes / E. L. Russell, L. H. Chiang,R. D. Braatz. – London : Springer-Verlag, 2000. – 192 p. DOI: 10.1007/978-1-4471-0409-4 3. Computational intelligence: a methodological introduction / [R. Kruse, C. Borgelt, F.Klawonn et. al.]. – London : Springer- Verlag, 2013. – 488 p. DOI: 10.1007/978-1-4471-5013-8_1 4. Олешко Д. Н. Построение качественной обучающей выборки для прогнозирующих нейросетевых моделей / Д. Н. Олешко, В. А. Крисилов, А. А. Блажко // Штучний інтелект. – 2004. – № 3. – С. 567–573. 5. Subbotin S. A. The training set quality measures for neural network learning / S. A. Subbotin // Optical memory and neural networks (information optics). – 2010. – Vol. 19, № 2. – P. 126–139. DOI: 10.3103/s1060992x10020037 6. Субботин С. А. Критерии индивидуальной информативности и методы отбора экземпляров для построения диагностических и распознающих моделей / С. А. Субботин // Біоніка інтелекту. – 2010. – № 1. – С. 38–42. 7. Encyclopedia of survey research methods / ed. P. J. Lavrakas. – Thousand Oaks: Sage Publications, 2008. – Vol. 1–2. – 968 p. DOI: 10.1108/09504121011011879 8. Hansen M. H. Sample survey methods and theory / M. H. Hansen, W. N. Hurtz, W. G. Madow. – Vol. 1 : Methods and applications. – New York : John Wiley & Sons, 1953. – 638 p. 9. Кокрен У. Методы выборочного исследования / У. Кокрен ; пер. с англ. И. М. Сонина ; под ред. А. Г. Волкова, Н. К. Дружинина. – М. : Статистика, 1976. – 440 с.

GOST Style Citations


Copyright (c) 2017 S. A. Subbotin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Address of the journal editorial office:
Editorial office of the journal «Radio Electronics, Computer Science, Control»,
Zaporizhzhya National Technical University, 
Zhukovskiy street, 64, Zaporizhzhya, 69063, Ukraine. 
Telephone: +38-061-769-82-96 – the Editing and Publishing Department.

The reference to the journal is obligatory in the cases of complete or partial use of its materials.