MULTI-MODELS IDENTIFICATION METHODS COMPARISON IN THE NON-LINEAR DYNAMIC SYSTEM IDENTIFICATION TASK

Authors

  • A. I. Guda National Metallurgical Academy of Ukraine (NMetAU), Dnipro, Ukraine, Ukraine
  • A. I. Mikhalyov National Metallurgical Academy of Ukraine (NMetAU), Dnipro, Ukraine, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2016-4-14

Keywords:

non-linear dynamic system identification, multi-model identification methods, models ensemble, simulation, extemum estimation.

Abstract

In this article a couple of identification methods for non-linear (possibly chaotic) dynamic systems are under consideration. Advantages
and drawbacks of existent methods are mentioned. All methods under consideration make use a number of models. Different tactics for the
models parameter movement for identification task solving are proposed. The simplest tactic uses models with fixed parameters. This
method have simple realization, provide best identification speed and worst accuracy. Method with band-limited models allows us achieve
better accuracy due to each model moving to its local extremum, but suffers to high-frequency oscillation, due to ignorance of the
identification system dynamic itself. Approach with models, which movement simulates body movement under external forces and viscous
friction demonstrates minimal identification errors among with significant speed. Identification process simulations are conducted and
conclusion are made. According to simulation results advantages are highlighted and drawbacks are studied. Conclusions allows to make
correct choice in identification method selection task. Also the results allows us to correctly chose some parameters on the identification
system.

References

Moon F. C. Chaotic vibrations. An introduction for applied scientists and engineers / F. C. Moon. – Weinheim : Wiley-VCH Verlag GmbH & Co, 2004 – 310 p. 2. Анищенко В. С. Сложные колебания в простых системах. Механизмы возникновения, структура и свойства динамического хаоса в радиофизических системах / В. С. Анищенко. – М. : Либроком, 2009. – 320 с. 3. Eykhoff P. System Identification Parameter and State Estimation / P. Eykhoff. – Wiley-Interscience, 1974. – 555 p. 4. Ljung L. System Identification: Theory for the User (2nd Edition) / L. Ljung. – Prentice Hall PTR, 1998. – 524 р. 5. Карабутов Н. Н. Структурная идентификация систем: Анализ динамических структур / Н. Н. Карабутов. – М. : МГИУ, 2008. – 160 с. 6. Синхронизация регулярных, хаотических и стохастических колебаний: Учебное пособие [В. С. Анищенко, В. В. Астахов, Т. Е. Вадивасова и др.]. – М. : УРСС, 2008 – 144 с. 7. Растригин Л. А. Случайный поиск в задачах оптимизации многопараметрических систем / Л. А. Растригин. – Рига : Зинатне, 1965. – 212 с. 8. Ивахненко М. М. Интегральный метод прямого поиска глобального экстремума / М. М. Ивахненко // Адаптивные системы автоматического управления. – 1980. – № 8. – С. 54–63. 9. Guda A. I. Criteria synthesis problem for the chaotic systems / A. I. Guda, A. I. Mikhalyov // Data Stream Mining & Processing (DSMP): IEEE First International Conference, Lviv 23–27 August 2016: processings. – Lviv : IEEE, 2016. – P. 125–128. 10. Guda A. I. Multi-model methods and parameters estimation approaches on non-linear dynamic system identification / A. I. Guda, A. I. Mikhalyov // Regional interuniversity compendium of scientific works “System technologies”. – 2016. – Vol. 2 (103). – P. 57–62. 11. Guda A. I. Method of Lorenz systems parametric identification by the searching models ensemble / A. I. Guda, A. I. Mikhalyov / / Computer Sciences and Information Technologies. – 2015. – Vol. 1. – P. 73–75.

How to Cite

Guda, A. I., & Mikhalyov, A. I. (2017). MULTI-MODELS IDENTIFICATION METHODS COMPARISON IN THE NON-LINEAR DYNAMIC SYSTEM IDENTIFICATION TASK. Radio Electronics, Computer Science, Control, (4). https://doi.org/10.15588/1607-3274-2016-4-14

Issue

Section

Control in technical systems