OWN MOTION FILTERS OPTIMISATION FOR SELF-TUNING ACS WITH THE TECHNOLOGICAL TYPE OF CONTROL OBJECT
DOI:
https://doi.org/10.15588/1607-3274-2016-4-15Keywords:
self-tuning ACS, transition coefficient, own motion, band pass filter, optimal parametric synthesis.Abstract
Technological processes as control objects are characterized by substantial delay in controlled variables response to control action andconsiderable quantity of varying factors, which have influence on the process, but, practically, inaccessible for measurement. These specifics,
in practice, often lead to substantial decrease in operation quality of the control system with typical algorithms and significantly make it harder
to design and develop self-tuning control systems for these types of control objects. Factors, depending on the sequences of the impacts they have on the control object, are subdivided into non-controllable coordinate and parametric disturbances. In this article the case is considered, when spectral composition of parametric disturbances is substantially lower in frequency range in comparison to coordinate disturbances spectral composition. Factors, which cause high-frequency changes in controlled variables, which cannot be compensated by the control actions, are considered as noises. For control objects of technological type, in which transition coefficient changes under the influence of parametric disturbances, the structure of self-tuning automatic control system is proposed. Unlike many known, principle of its operation includes passive identification of the transition coefficient changes in the closed-loop circuit. From the overall movement of the closed-loop system, which arises under the influence of the coordinate disturbances, the part of the own motion of the system is being separated utilizing band pass filters. By detecting the changes in spectrum of this component, self-tuning loop determines current value of control object transition coefficient and changes the value of controller transition coefficient in the stabilization circuit for maintaining the stable operation of the system. Computer experiments for evaluation of how coordinate disturbances and noises spectral composition change influence the quality of self-tuning were carried out, the possibility of carrying out the optimal parametric synthesis of the system is shown, recommendations for approximate evaluation of the self-tuning loop parameters are proposed.
References
Хобин В. А. Системы гарантирующего управления технологическими агрегатами: основы теории, практика применения / В. А. Хобин. – Одесса : «ТЭС», 2008. – 306 с. 2. Изерман Р. Цифровые системы управления: пер. англ. / Р. Изерман. – М. : Мир, 1984. – 541 с. 3. Основы автоматического регулирования / [М. А. Айзерман, Д. А. Башкиров, П. В. Бромберг и др.] ; под ред. В. В. Солодовникова. – М. : Государственное научно-техническое издательство машиностроительной литературы «Машгиз», 1954. – 1117 с. 4. Александров А. Г. Состояние и перспективы развития адаптивных ПИД-регуляторов в технических системах [Электронный ресурс] / А. Г. Александров, М. В. Паленов. – Режим доступа: http://adaplab.ru/papers/alex/UKI12.pdf 5. Авторское свидетельство SU 1241192 A1 СССР, G 05 B 13/02. Самонастраивающаяся система / В. А. Хобин, А. Г. Плеве ; заявитель Одесский технологический институт пищевой промышленности им. М. В. Ломоносова. – № 3821296/24-24; заявл. 06.12.84; опубл 30.06.86. Бюл. 24. – 7 с. 6. Патент на корисну модель UA 36671 Україна, МПК2006 G05B13/02. Самоналагоджувальна система / В. А. Хобін, О. А. Марчук (Україна); заявник Одеська національна академія харчових технологій. – № u200801328; заявл. 04.02.2008; опубл. 10.11.2008. Бюл. 21. – 5 с. 7. Khobin V. A. Filters research for free motion extraction in self tuning automatic control systems / V. A. Khobin, M. V. Levinskyi // ATBP journal. – 2016. – № 3 (27). – P. 5–16. 8. Левінський М. В. Тестові САР для дослідження алгоритмів їх самоналаштування / М. В. Левінський // Наукові праці ОНАХТ : наукове видання. – Одеса : 2015. – Вип. 48. – С. 142–146. 9. Титце У. Полупроводниковая схемотехника. Т. II. / У. Титце, К. Шенк. – М. : Издательство ДМК, 2007. – 942 с. 10. Куликов Е. И. Методы измерения случайных процессов / Е. И. Куликов. – М. : Радио и связь, 1986. – 282 с. 11. Лившиц Н. А. Вероятностный анализ систем автоматического управления / Н. А. Лившиц, В. Н. Пугачев. – М. : Издательство «Советское радио», 1963. – 896 с.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2017 V. A. Khobin, M. V. Levinskyi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.