@article{Krylova_Тverytnykova_Vasylchenkov_Kolisnyk_2020, title={MODIFIED ALGORITHM FOR SEARCHING THE ROOTS OF THE ERROR LOCATORS POLYNOMINAL WHILE DECODING BCH CODES}, url={http://ric.zntu.edu.ua/article/view/215168}, DOI={10.15588/1607-3274-2020-3-14}, abstractNote={<p>Context. In telecommunications and information systems with an increased noise component the noise-resistant cyclic BCH and Reed-Solomon codes are used. The adjustment and correcting errors in a message require some effective decoding methods. One of the stages in the procedure of decoding RS and BCH codes to determine the position of distortions is the search for the roots of the error locator polynomial. The calculation of polynomial roots, especially for codes with significant correction capacity is a laborious task requiring high computational complexity. That is why the improvement of BCH and RS codes decoding methods providing to reduce the computational complexity is an urgent task.</p><p>Objective. The investigation and synthesis of the accelerated roots search algorithm of the error locator polynomial presented as an affine polynomial with coefficients in the finite fields, which allows accelerating the process of BCH and RS code decoding.</p><p>Method. The classical roots search method based on the Chan’s algorithm is performed using the arithmetic of the Galois finite fields and the laborious calculation, in this case depends on the number of addition and multiplication operations. For linearized polynomials, the roots search procedure based on binary arithmetic is performed taking into account the values obtained at the previous stages of the calculation, which provides the minimum number of arithmetic operations.</p><p>Results. An accelerated algorithm for calculating the values of the error locator polynomial at all points of the GF(2m) finite field for linearized polynomials based on the Berlekamp-Massey method has been developed. The algorithm contains a minimum number of addition operations, due to the use at each stage of the calculations the values obtained at the previous step, as well as the addition in the finite field GF(2). A modified roots search method for affine polynomials over the finite fields has been proposed to determine error positions in the code word while decoding the cyclic BCH and RS codes.</p><p>Conclusions. The scientific newness of the work is to improve the algorithm of calculating the roots of the error locator polynomial, which coefficients belong to the elements of the finite field. At the same time it simplifies the procedure for cyclic BCH and RS codes decoding, due to reducing the computational complexity of one of the decoding stages, especially finding the error positions using the modified Berlekamp-Massey algorithm. These facts are confirmed by the simulation program results of the roots search of the error locator polynomial algorithm. It is shown, that the application of the accelerated method permits to reach a gain on speed of 1.5 times.</p>}, number={3}, journal={Radio Electronics, Computer Science, Control}, author={Krylova V. А. and Тverytnykova Е. Е. and Vasylchenkov, O. G. and Kolisnyk, T. P.}, year={2020}, month={Nov.}, pages={150–157} }