METHODS OF SYNTHESIS OF MODELS OF QUANTITATIVE DEPENDENCIES IN THE BASIS OF TREES OF REGRESSION, REALIZING CLUSTER-REGGRESSION APPROXIMATION BY PRECEDENTS

Authors

  • S. A. Subbotin National University «Zaporizhzhia Polytechnic», Zaporizhzhia, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2019-3-9

Keywords:

Modeling, cluster-regression approximation, estimation, decision trees, regression analysis

Abstract

Context. To make decisions in technical applications, it is usually necessary to have a model that allows you to predict the state
of a managed object or process. The object of the study is the process of building dependency models by use cases. The subject of the
study are the methods for constructing quantitative dependencies based on cluster-regression approximation precedents.
Objective. The aim of the paper is to simplify cluster regression approximation models by indirectly implementing cluster analysis
in the process of model building.
Method. A tree-based cluster-regression approximation method is proposed which, for a given training sample, constructs a tree
for hierarchical clustering of instances whose leaf nodes correspond to clusters, for each cluster, constructs a particular model of dependence
on instances of the training sample that fall into the cluster, in order to provide the least complexity of the model and uses
the set the most informative features of the shortest length. This allows to ensure an acceptable accuracy of the model, high levels of
interpretation and generalization of data, to reduce the complexity of the model, and to simplify its implementation in the sequential
organization of calculations.
Results. The software that implements the proposed method of tree-like cluster-regression approximation is developed. The developed
method and the software implementing it are investigated in solving practical problems of prediction. The conducted experiments
confirmed the working capacity of the developed software and allow to recommend it for use in practice.
Conclusions. Unlike traditional methods of regression model constructing that build a model based on a function form that is
uniform for the entire feature space, the proposed method forms a hierarchical combination of particular models. Unlike the wellknown
methods of regression tree constructing whose leaf nodes contain averaged values of the output feature for clusters, the proposed
method forms a tree consisting of particular models for clusters, which allows to ensure greater accuracy of the model.

Author Biography

S. A. Subbotin, National University «Zaporizhzhia Polytechnic», Zaporizhzhia

Dr. Sc., Professor, Head of the Department of Software Tools

References

Ajvazjan S. A., Enjukov I. S., Meshalkin L. D. Prikladnaja statistika: Issledovanie zavisimostej. Moscow, Finansy i statistika,

, 487 p.

Afifi A., Jejzen S. Statisticheskij analiz: podhod s ispol’zovaniem EVM. Moscow, Mir, 1982, 488 p.

Kruse R., Borgelt C., Klawonn F. et. al. Computational intelligence:a methodological introduction. London, Springer-Verlag,

, 488 p.

Intelligent hybrid systems: fuzzy logic, neural networks, and genetic algorithms, ed. D. Ruan. Berlin, Springer, 2012, 374 p.

Ivahnenko A. G., Jurachkovskij Ju. P. Modelirovanie slozhnyh sistem po jeksperimental’nym dannym. Moscow, Radio i svjaz’,

, 118 s.

Madala H. R., Ivakhnenko A. G. Inductive Learning Algorithms for Complex Systems Modeling. Boca Raton, CRC Press, 1994,

p.

Clarke B., Fokoue E., Zhang H. H. Principles and theory for data mining and machine learning. New York, Springer, 2009,

p.

Breiman L., Friedman J. H., Stone C. J., Olshen R. A. Classification and regression trees. Boca Raton, Chapman & Hall, CRC, 1984, 368 p.

Rutkowski L. Flexible neuro-fuzzy systems : structures, learning and performance evaluation. Boston, Kluwer, 2004, 276 p.

Liu P., Li H. Fuzzy neural network theory and application. Singapore, World Scientific, 2004, 376 p. (Series in Machine Perception and Artificial Intelligence ; vol. 59).

Buckleya J. J., Hayashi Y. Fuzzy neural networks: a survey, Fuzzy sets and systems, 1994, Vol. 66, Issue 1, pp. 1–13.

Jang J. R., Sun C.-T., Mizutani E. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Upple Saddle River, Prentice-Hall, 1997, 614 p.

Subbotin S. O. Algorytmy klaster-regresijnoi aproksymacii ta jih nejromerezhevi interpretacii, Radio Electronics, Computer

Science, Control, 2003, No. 1, рр. 114–121.

Subbotin S. A. Metod sinteza nejro-nechjotkih approksimatorov, Avtomatizacija i sovremennye tehnologii, 2007, No. 11,

pp. 14–18.

Subbotin S. A. Nejro-nechjotkaja klaster-regressionnaja approksimacija po obobshhjonnoj osi, Nejrokomp’jutery: razrabotka,

primenenie, 2009, No. 8, pp. 52–62.

Berkhin P., Dhillon I. S. ed. R. A. Meyers Knowledge discovery: clustering, Encyclopedia of complexity and systems science.

Berlin, Springer, 2009, pp. 5051–5064.

Abonyi J., Feil B. Cluster analysis for data mining and system identification. Basel, Birkhäuser, 2007, 303 p.

Widrow B., Lehr M. A. 30 years of adaptive neural networks: percep-tron, madaline, and backpropagation, Proceedings of the

IEEE, Vol. 78, Issue 9, pp. 1415–1442. DOI:10.1109/5.58323

Ravindran A., Ragsdell K. M, Reklaitis G. V. Engineering optimization:methods and applications. New Jersey, John Wiley

& Sons, 2006, 688 p.

Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors, Nature, 1986, Vol. 323,

P. 533–536. DOI:10.1038/323533a0

Gorban A. N., Mirkes Eu. M., Tsaregorodtsev V. G. Generation of Explicit Knowledge from Empirical Data through Pruning of

Trainable Neural Networks, International Joint Conference on Neural Networks (IJCNN’99), Washington, July 1999 : proceedings.

Los Alamitos, IEEE, 1999, Vol. 6. pp. 4393–4398.

Akaike H. A new look at the statistical model identification, IEEE transactions on automatic control, 1974, Vol. 19, № 6,

pp. 716–723.

Schwarz G. E. Estimating the dimension of a model, Annals of statistics, 1978, Vol. 6, No. 2, pp. 461–464.

Hannan E. J., Quinn B. G. The determination of the order of an autore-gression, Journal of the Royal Statistical Society, 1979,

Ser. B, Vol. 41, pp. 190–195.

Subbotin S. A. Analiz svojstv i kriterii sravnenija nejrosetevyh modelej dlja reshenija zadach diagnostiki i raspoznavanija obrazov, Reestracіja, zberіgannja і obrobka danih, 2009, Vol. 11, No. 3, pp. 42–52.

Subbotin S. A. Modeli kriteriev sravnenija nejronnyh i nejronechjotkih setej v zadachah diagnostiki i klassifikacii obrazov,

Naukovі pracі Donec’kogo nacіonal’nogo tehnіchnogo unіversytetu. Serіja «Іnformatyka, kіbernetyka ta obchysljuval’na

tehnіka». Donec’k, DNTU, 2010, Vyp. 12 (165), pp. 148–151.

Subbotin S. A. Metodika i kriterii sravnenija modelej i algoritmov sinteza iskusstvennyh nejronnyh setej, Radio Electronics,

Computer Science, Control, 2003, No. 2, pp. 109–114.

Boguslaev A. V., Olejnik Al. A., Olejnik An. A., Pavlenko D. V., Subbotin S. A.; pod red. Pavlenko D. V., Subbotina

S. A. Progressivnye tehnologii modelirovaniya, optimizacii i intellektual’noj avtomatizacii etapov zhiznennogo cikla aviacionnyh dvigatelej : monografiya. Zaporozh’e, OAO «Motor Sich», 2009, 468 p.

Published

2019-10-01

How to Cite

Subbotin, S. A. (2019). METHODS OF SYNTHESIS OF MODELS OF QUANTITATIVE DEPENDENCIES IN THE BASIS OF TREES OF REGRESSION, REALIZING CLUSTER-REGGRESSION APPROXIMATION BY PRECEDENTS. Radio Electronics, Computer Science, Control, (3), 76–85. https://doi.org/10.15588/1607-3274-2019-3-9

Issue

Section

Neuroinformatics and intelligent systems